Pre-Service Mathematics And Science Teachers' Entry Grades In Mathematics And Their Performance In Algebra II In Tamale College Of Educationin Northern - Ghana

Osei Yaw

Mathematics Tutor and Development Studies Practitioner, Mathematics and ICT Education Department, Tamale College of Education, Tamale, Ghana

Adu-Poku. Frederick

Mathematics Tutor, Mathematics and ICT Education Department, St. Louis College of Education, Kumasi

Abstract: This paper examined the entry grades of pre-service mathematics /science teachers' and the performance in Algebra II in colleges of education with specific reference to Tamale College of Education. The study involved the past record of first year pre-service teachers' who enrolled in either mathematics and science of the first year B.ED programme. A total of 135 made up of 60 Science major and 75 mathematics major were purposively selected for the study. Information regarding their grades obtained in core mathematics, elective mathematics and first year first semester examination in Algebra II were taken. The findings revealed that their entry grades in core and elective mathematics as obtained at the senior high reflect their performance in first year first semester examination in Algebra II. It is recommended that Colleges of Education mathematics teacher should find suitable methods of teaching and learning of mathematics that will help senior high school students integrate effectively with the system of teaching at the colleges

Keywords; pre-service mathematics /science teachers, curriculum, performance in Algebra II, teaching and learning, senior high school

I. INTRODUCTION

BACKGROUND TO THE STUDY

The importance of mathematics in the scientific and technological development of countries cannot be under estimated (Enu, Agyman, & Nkum, 2015). This is because mathematics skills are essential in understanding other disciplines including engineering, sciences, social sciences and even the arts (Patena & Dinglasan, 2013; Phonapichat, Wongwanich, and Sujiva, 2014; Schofield, 1982). Abe and Gbenro (2014) point out that mathematics plays a multidimensional role in science and technology of which its application outspread to all areas of science, technology as well as business enterprises. Due to the importance that mathematics engulfs, the subject became key in school curriculum. According to Ngussa and Mbuti (2017), the mathematics curriculum is intended to provide students with

knowledge and skills that are essential in the changing technological world.

Mathematical ability is crucial for the economic success of societies (Lipnevich, MacCann, Krumm, Burrus, & Roberts, 2011). Algebra is one of the most abstract strands in Mathematics and considered difficult (Egodawatte and Stoilescu, 2015). The fundamental difficulty for the students to learn Algebra is the use of symbolic language. Wagner and Parker (1999) highlight that the use of two different symbol systems (letters and numbers) at the same time in Algebra allows for confusion. Perso (2002) explain that the students' errors in the use of parentheses mean nothing for them, as seen on the following example: 2(a + b) = 2a + b happens in Algebra. Sierpinska (2008) bears out a statement that the students do not have an adequate understanding toward the variables and they often think that letters are the names for the concrete objects based on their previous arithmetic knowledge. It is crucial for the teachers to realize and analyze the students' difficulties in their learning process (Chick and Baker, 2005).

Several reforms at teacher training Colleges and now College of Education have taken placed over the past two decades (Educational reforms, 2008,). Each reform provides for an entry requirement for prospective applicants who would want to enroll into College of Education. These entry requirements are put into two main categories, that is: three credits pass in core subjects including Mathematics and English and any other three credits passes in the candidate electives area relevant to the course to be pursued at the College.

The general requirement for admission to the Bachelor of Education (B.Ed) Programme is as follows:

WASSCE Holders: CREDIT (A1-C6) in Six (6) subjects comprising Three(3) Core subjects, including English Language and Core Mathematics, and Three (3) Elective subjects relevant to the course of study.

SSSCE Holders: CREDIT (A-D) in Six (6) subjects comprising Three (3) Core subjects, including English Language and Core Mathematics, and Three(3) Elective subjects relevant to the course of study

Holders of TVET Qualifications: CREDIT in Three Core Subjects including English and Mathematics and PASSES in Three Elective Subjects relevant to the course of study.

Candidates awaiting the MAY/JUNE, 2019 WASSCE and NABPTEX RESULTS can also apply. (NTCE and PRINCOP, 2019)

The specific requirements for admission to the various COURSE OPTIONS on offer within the BACHELOR OF EDUCATION PROGRAMME are as detailed below:

Programme	WASSCE Applicants	SSCE Applicants	
Options			
B.Ed.	Credit (A1-C6)in Three	Credit (A-D) in	
GENERAL(With	(3) CORE subjects,	Three (3) CORE	
Specializations in	including English	subjects including	
Primary and	Language and	English Language	
Junior High	Mathematics, and Three	and Mathematics,	
School).	(3)	and Three (3)	
	Elective subjects	Elective subjects	
	relevant to the course of	relevant to the	
	choice	course of choice	
B.Ed. SCIENCE	Credit (A1-C6) in	Credit(A-D) in (3)	
&	Three (3) CORE	CORE subjects	
MATHEMATICS	subjects including	including English	
	English Language and	Language and	
	Mathematics and Three	Mathematics and	
	(3) Elective Subjects	Three (3) Elective	
	relevant to the course of	Subjects relevant to	
	choice.	the course of choice	
B.Ed. EARLY	Credit(A1-C6) in Three	Credit (A-D) in	
CHILDHOOD	(3)CORE subjects	Three (3)CORE	
EDUCATION	including English	subjects including	
	Language and	English	
	Mathematics and Three	Language and	
	(3)	Mathematics and	
	Elective Subjects	Three (3) Elective	
	relaxant to the course of	Subjects relevant to	
	choice	the course of choice.	
() IN 10 10 10			

Source: (NTCE and PRINCOP, 2019)

Table 1: shows programme option and requirementsThe above requirements shows a crucial role played bymathematics in our educational systems and how it is essential

in our everyday life activities. The primary idea driving the philosophy of teaching prescribed in the delivery of the new 4year Bed curriculum is a belief that skill and conceptual understanding are legitimate goals of instruction, in that each builds on the other, and therefore both need to be sought together in teaching.

Students' content knowledge is important in facilitating the learners' construction of knowledge. There has been much research on teachers' knowledge of mathematics that has focused on fractions (Carpenter, Fennema, Peterson, Chiang, & Loef, 1988) or numbers and operations (Ball, 1990; Ma, 1999). But little is known about the relationship between preservice mathematics /science teachers' grades in algebra II course in colleges of education and their grades in SHS Mathematics. Hence this study seeks to bring to the forth the entering grades of mathematics and science trainees' in elective and core mathematics at the SHS their performance in Algebra II in Colleges of Education.

OBJECTIVES

The following were the objectives of the study.

- ✓ Find out the grades of pre-service mathematics /science teachers' in mathematics at the Senior High School (SHS) at the time of entry into the College.
- ✓ Find out trainees' performance in Algebra II at the end of the year one first semester Examination

RESEARCH QUESTIONS

The following research question were formulated to guide the study:

- ✓ What grades do pre-service mathematics /science teachers' obtain in SHS elective mathematics?
- ✓ What is the performance in terms of grades obtained by pre-service mathematics /science teachers' in Algebra II?

SIGNIFICANCE OF THE STUDY

The study will drive the interest of both college mathematics teachers and Pre-service teachers to have a firsthand informations on the entry grades of students they teach in the various mathematics courses that are mounted each semester. It is also hope that the finding will serves as a concrete bases for sound judgment as to the sort of teaching strategies that should be adapted to help pre-service mathematics teacher in their pursue to become mathematics teachers at the basic school level.

II. THEORETICAL FRAMEWORK

SCHEMA THEORY

Schema theory emerged in reaction to the machine metaphor of early cognitive theorists. It falls close to the interactionist view but leaning toward mind-centeredness. Following the philosophical notions of Kant (1781/1900) and Wittgenstein (1958), the mind frames perceptions and

experiences, actively interacting with sensory information from the environment.

Rumelhart and Ortony (1977) and Rumelhart (1980) suggested certain characteristics of schemas: (1) They have variables; (2) They can be embedded in each other; (3) They represent knowledge at various levels of abstraction; (4) They represent knowledge rather than definition; (5) They are active processors; and (6) They are recognition devices, determining the goodness of fit of the incoming information. Such schemas help to organize disparate bits of information into a meaningful system or network (Anderson, 1990).

According to schema theory, the individual's background knowledge influences the processing of incoming information. Thus, trainee-centered approaches, such as strategy instruction, metacognition, and selective attention, are recommended.

This theory resonates with this study because, the Colleges of Education Algebra II course content relies solely on both the Senior High School core and Elective (further) mathematics course content. Hence the SHS Mathematics serves as a pre-requisite or foundation course for the Algebra II. More importantly is the fact that the study is situated in the context of how background knowledge in SHS Mathematics relates to performance of trainees in College Algebra II hence the use of schema theory as my theoretical framework.

III. CONTENT OF THE SENIOR HIGH SCHOOL ELECTIVE MATHEMATICS CURRICULUM

The content of the Senior High School elective mathematics Curriculum comes with its aims as testing the students on the following;

- ✓ Further conceptual and manipulation skills in Mathematics
- an intermediate course of study which bridges the gap between Elementary Mathematics and Higher Mathematics
- aspect of Mathematics that can meet the needs of potential Mathematicians, Engineers, Scientist and other professionals (WAEC, 2013)

The curriculum of the SHS is broken down in to syllabus as indicated in Table 2.

Topic	Content	Notes
Circular Measure and Radians	Lengths of Arcs of circles. Perimeters of Sectors and	
Trigonometry	Segments (measure in radians) i. Sine, Cosine and Tangent of angles ii. Trigonometric ratios of the angles 30^{0} , 45^{0} , 60^{0} iii. Height and distances	For $0^{0} \le \beta \le 360^{0}$ Identity without use of tables. Graph of the functions of the form. y = acosx + bsinx
	iv. Angle of elevation and depression	Graphs of the functions and the form. $y = a \cos x + b \sin x$

Simple case only

vi. Compound and multiple angles Their use in simple identities and solutions of trigonometric ratios (vii) Graphical A cos x +b sin x =c solution of simple trig. Equation Include notion of radian (viii) Solution of and trigonometric ratio triangles of negative angles. Indices, logarithms and surds (a) Indices Meaning of a°, (i) Elementary theory of indices Calculations involving (b) Logarithms multiplication, division, power and nth root: (ii) Elementary $\log a^n$, $\log \sqrt{a}$, $\log a^n$ theory of logarithm Log_a xy=log x +log Reduction of a relation Log x = nlog xSuch as $y = ax^b$, (a,b are constants) to a linear form. (iii) Applications $\log_{10} y = b$ $\log \log_{10} x x +$ log**log₁₀ a** a Consider other example such as $y = ax^b$, (c) Surds Surds of the form Rationalization of the denominator: $a, a \sqrt{b}, a + b \sqrt{n}, \sqrt{b}$ Where a is rational, b is positive integer and n is not a perfect square. (d) Sequences: (i) Finite and Linear and infinite sequences exponential (ii) $U_n = U_1 + (n - 1)$ sequences 1)d, where d is the common difference. (iii) $S = \frac{n}{2} (U_1 + U_n)$ (iv) $U_n = U_1 r^{n-1}$ Where is the common ratio? $(v) S_n =$ U1(1+r):r<1 1-rO rn-1):r>1 r-1

v. Bearing, positive and negative angles

(e) Use of the Binomial Theorem for a positive integral index.

International Journal of Innovative Research and Advanced Studies (IJIRAS) Volume 7 Issue 6, June 2020

	Proof of Binomial			inequalities	
	required. Expansion of (a+b) ⁿ		8. Logic	(i) The truth table, Using P or Q, P and Q P implies Q	Validity of the compound statements Involving implications and connectives
4. Algebraic equations	Use of $(1+x)^n$, nx for any rational n, where x is sufficiently, Small e.g. (0.998) (a) Factors and Factorization. Solution of Quadratic equation using: (i) Completing the square (ii) formula (b) Symmetric properties of the equation $x^2 + b + a = 0$	The condition b ² -4ac>0 for equation to have a real root Sum and products of roots	9. Co-ordinate Geometry Straight line	Q implies Q Q implies P (ii) Rule of syntax: True or false Statement, rule and logic applied to arguments, implications and deductions (a) (i) Distance between points; (ii) Mid-point of the segment; (iii) Gradient of a line;	Include the use of symbol P P√q,p∧q,p=.q Use of truth tables Gradient of a line as a ratio of vertical change and horizontal change
	(c) Solution of two simultaneous	methods permissible.		(iv) Condition for parallel and perpendicular lines.(b) Equation of a line:	
5. Polynimials	equations where one is linear and other is quadratic (i) Addition, subtraction and multiplication of polynomials	Not exceeding degree 4	Conic Sections	 (i) Intercept form; (ii) Gradient form; (iii) The general form. 	(i) Equations in terms of center and radius e.g. $(x + a)^2 + (y-b)^2 = r^2$ (ii) The general form: $X^2 + y^2 + 2fy + c = 0$
	 (ii) Factor theorem and reminder theorem (iii) Zero of polynomials function. (iv) Graph of polynomials functions of degree n < 3 (v) Division of a polynomial of degree not greater than 4 by a 	1JR	10. Differentiations	 (i) Equation of a circle; (ii) Tangent and normal are not required for circle. (a)(i) The idea of limit (ii) The derivation of a function. Application for differentiation 	 (i) Intuitive treatment of limit. Relate to the gradient of a curve. (ii) Its meaning and its determination from first principles in simple cases only. e.g. axⁿ + b, n≤3, (n∈1) (iii) Differentiation of
6. Rational functions	polynomial of lower degree e.g: $f:x \rightarrow ax+b$				(iii) Differentiation of polynomial e.g. $2x^4-4x^3$ + $3x^2-x+7$ and $(a+bx^n)^n$
	 (i) The four basic operations. (ii) Zeros, domain and range sketching not required. 	(iii) Resolution of rational function into partial functions. Rational of functions of the form Q(x)=F(x)		(b) (i) Second derivatives and rates of change;	(i) The equation of a tangent to a curve point(ii)Restrict turning points to maxima and minima.
		$\overline{\mathbf{G}(\mathbf{x})}$ $\mathbf{G}(\mathbf{x}) = 0$		(ii) Concept of maxima and minima	(iii)Include curve sketching (up to cubic functions) and linear kinematics+
7. Linear Inequality	Graphical; and analytical solution of simultaneous linear Inequalities in 2 variables and quadratic		11.Integration	(i) Indefinite integral	(i) Exclude n=-1 in $\int x^2 dx$ (ii) Integration of sum and difference of polynomials. 3

e.g

 $4x^3 + 3x^2 - 6x + 5$

	(ii) The definite integral	Include linear kinematics. Relate to the area under a curve
12. Sets	 (iii) Application of definite integral (i) Idea of a set defined by a property. Set notations and their meanings (ii) Disjoint sets, Universal set and complement of set 	 (iii) Plane areas and rate of change. (x:x is real), U,∩ empty set {},Ø €,U (Universal set) or A¹ (Complement of a set A)
	 (iii) Venn diagrams to solve problems (iv) Commutative and Associative laws, Distributive properties over union and intersection 	
13.Mappings and Functions	 (i)Domain and co- domain of a function. (ii)One-to-one, onto, identity and constant mapping; (iii)Inverse of a function; (iv)Composition of functions. 	The notation: e.g f: $x \rightarrow 3x + 4$ g: $x \rightarrow x^2$ where Graphical representation of a function image and the range.
		Notation: fog(x) f(g(c)) Restrict to simple algebraic functions only.
14. Matrices	(i) Matrix representation (ii) Equal matrices	Restrict to $2x2$ matrices. Introduce the notation
(b) Linear transformation	(ii) Equal matrices	(i) Notation I for the unit
(c) Determinant	 (iii) Addition of matrices. (iv) Multiplication of matrix by a scalar (v)Multiplication of 	identity matrix (ii) Zero or null matrix
15. Operations	matrices Binary Operations: Closure, Commutativity, Associativity, Distributivity, Identity elements and inversed	

Source: (WAEC, Regulations and Syllabuses, 2013) Table 2: SHS Mathematics Curriculum

CONTENT OF THE ALGEBRA II CURRICULUM/ SYLLABUS

The content of Algebra II of the Colleges of Education in Ghana is premised on the basis that students have knowledge of basic Algebra in SHS Core Mathematics. The aims of the syllabus is capture in the course description and it is well articulated in line with the National Teaching Standard (SNT) and the National Teachers Curriculum Framework (NTECF). In essence, the course is designed to deepen and build on students understanding of basic algebra covered at the SHS level. It will expose students to the following: Set theory, Binary operations involving surds and rationalization, Algebraic Equations and Inequalities (linear and quadratic) including linear programming, Linear and Exponential sequences, polynomials and Rational Function. Exponential and logarithmic equations including change of base, application of linear and exponential sequences, Binomial expansion involving positive integral powers, and Matrices (up to 3x3 Matrices). A detailed description of the curriculum is shown in table 3. Emphasis were made on the practical applications of these topics through the use of word problem and semester projects.

The learning outcomes expected of the students among other things include;

Demonstrate a sound knowledge of mathematical concepts and procedures in the content area studied

Make connection between the course content and other disciplines and activities in daily life

Solve problems in the content area studied using appropriate procedures.

Kilpatrick (2011) contends that mathematical proficiency relies on teaching mathematics using the right methodology and that these proficiencies are conceptual understanding, procedural fluency, strategic experience, adaptive reasoning, and production disposition that will coherently build in the learner. It is in response to this that the mode of delivery of the Algbra II for the New B.Ed programme led by the University of Cape Coast Institute of Education had adopted these, Face to Face, Practical Activity, Work-based learning, Seminar, Independent Study e-learning opportunities and Practicum. (Institute of Education, UCC, 2018)

Units	Topics	Subtopics(if any)	Teaching and learning activity to achieve
			learning outcomes
1	Set	Operations on sets: De-	Encourage students to
	Theory	Morgan's identities,	verify the laws using
		complement of a set,	specific examples.
		and solving two and	Create suitable
		three set problems,	experience for students
		differences between two	to establish the relation
		sets. E.g. A-B= $A \cap B^1$	$A-B = A \cap B^1$
2		(reference to the union	
	Polynomi	of A and B).	Create context for
	als and		polynomial functions
	Rational	Evaluating polynomial	and rational functions
	functions	functions, Remainder	for students to get in-
		and factors theorems,	depth knowledge of the
		Roots of polynomial	content
		function	Engage students in
			evaluating given
			polynomial functions
			Provide worthwhile
			opportunities for
2			students to apply the
3			remainder and factor
	D:		theorems
	Binary		
	operations		Provide opportunities
	involving	Due no esti con efilia e en	for students to verify the
	surds and	Properties of binary	properties of binary

4	rationaliza tion	operations ie. Closure, commutative,	operations involving rational numbers and		IV. METH
	Annlie-ti-	associative, and distributive. Finding	rationalizations of surds	The r	nathematics
	Applicatio ns of	inverse Evaluating	life situations that	various to	specifically
	Algebraic	binary operations	involve application of	batwoon t	bet of the B
	Equations	involving surds	inequalities. The use of	between u	the second second
	and	(rationalization of	relevant ICT software is	was done	through ex
5	Inequaliti	surds).	encouraged eg.	Algebra as	spect of the c
	es	Solving quadratic	Graphical calculator and	Mathemat	ICS.
	linear	equations by	computer	The s	study involve
	programm	factorization, and by the	Provide relevant	service te	achers' who
	ing	use of quadratic	situations leading to:	science pr	ogrammes o
		formula. Solving word	Generating linear	are to ma	jor in either
	Linear	and inequalities	sequences eg. Simple	either of	the two. A
	and	including linear	exponential sequences	Science n	najor and 75
	Exponenti	programming,	.eg. population growth	selected f	or the study
	al		Finding the nth term of	obtained i	n both core
,	Sequences		a given sequence	were take	n from them.
6		Linear sequences	Sum of first n terms of	examination	on in Algebra
		Exponential sequences	given sequence	release by	Institute of
		The general term of	Revise the laws of	and the ex	xamining bo
		linear and exponential	indices and logarithms	2018/2019).
		sequences, sum of first	with students. Provide	This	was later va
		n-terms of linear and	relevant contextual	grades pro	wide by the
7		exponential sequences	work on in groups and as individuals	WEAC.	
	Exponenti			DESEADO	U OUESTI
	al and			MATHEN	ATICS AN
	Logarithm		Expose students to the		TATICS AN
	equations		Provide opportunities to_	SHS ELE	CIIVE MAI
	including		students to use the		
	change of	Solving equations	Pascal triangle to		Mathemat
8	base,	involving indices e.g. 9 ^x	expand given binomial		Science
		$+ 3^{x+1} - 4 = 0$. Solving	expansion to estimate	Grade	Core
		logarithms including	given powers eg. 0.98		Maths
	Binomial	change of base	Creating contexts for	A_1	1
	Expansion	eg.	matrices and operations	\mathbf{B}_2	-
	involving	$\log_a x + 2 \log_x a =$	-on matrices eg. Football	$\overline{B_3}$	14
	positive		League Tables	C_4	7
	integral		Involve students in	C_5	14
	exponents		solve real life task on	Ce	16
			operations on matrices.	\mathbf{D}_{7}	-
		Binomial Expansion	Engage students in	E ₀	_
	N	involving positive	finding determinants	E ₈	_
	Matrices	integral powers up to	and inverses of 2by2	Total	52
	(up to 5x5 Matrices)	the 6 th power and its	in solving simultaneous	<u> </u>	J2
)	application.	equations	Source: Ju	ela Data, 201
			•	Table 4.	: Entry grade
		Operations on 2x2 and			teachers' in
		3x3 matrices – adding,		Table	4 indicates t
		subtraction and scaler		in both co	ore mathemat
		determinants and		their majo	r and minor J
		inverse of 2x2 matrices.		of educati	on. 22 pre-se
		application of matrices		class had	grade C ₄ or b
		to solving simultaneous		had grade	C ₆ or below.
		linear equations		is C_5 . Th	is therefore
с.	/ I ····	involving 2 variables.	(10)	teachers'	met the minin
SOURCE	2: (Institute)	DJ Eaucation, UCC, 20	10) Jachna II	mathemati	ics. In the are
Tanle	n Detailed יי	I OURSE CONTENT FOR AL	venra II In Colleges		

of Education

IODS AND DISCUSSIONS

curriculum at the S.H.S was reviewed. done in the area of Algebra II. The amined to see the relationship that exists ED first year course in Algebra II. This stensive literature review of both the ore mathematics and that of the elective

ed the past record of first year preenrolled in either mathematics and of the first year B.ED programme and science or mathematics and minor in total of 135 trainees' made up of 60 mathematics major were purposively y. Information regarding their grades mathematics and elective mathematics In addition the grades of the semester a II were also taken from their results of Education, University of Cape Coast, dy for the first year B.Ed. programme

lidated by cross checking each of the trainee with their confirm results from

ON ONE (1): WHAT GRADES DID D SCIENCE TRAINEES OBTAIN IN **THEMATICS**

7	Mathematics minor		Mathematics major	
	Science M	Science Major		e Minor
Grade	Core	Elective	Core	Elective
	Maths	Maths	Maths	Maths
A_1	1	4	3	8
B_2	-	3	9	9
B_3	14	16	26	19
C_4	7	6	13	12
C_5	14	3	4	6
C_6	16	4	15	7
D_7	-	4	-	2
E_8	-	2	-	4
F ₉	-		-	1
Total	52	42	70	68
a	C 11D . 0010			

9

es of pre-service mathematics /science Tamale colleges of education

the entry grades of pre-service teachers' tics and elective mathematics based on programmes as pertained in the colleges ervice teachers' from the science major etter, 14 of them had grade C_5 while 16 On the average, the grade performance means that almost all the pre-service mum general entry grade of C_6 for core ea of elective mathematics which is also a requirement for the course/program, 3 of the science major pre-service teachers' had grade C5. 29 of them had grades better than C₅ while 10 of them had grades below C₅. This put the average performance of the pre-service teachers' in science major programme at grade $C_{4\!\!\!\!\!\!}$

Also, 41 pre-service teachers' from the mathematics major class had grade C_4 or better, 4 of them had grade C_5 while 16 had grade C_6 or below. On the average, the grade performance is C_4 . This therefore means that almost all the pre-service teachers' met the minimum general entry grade of C_6 for core mathematics. In the area of elective mathematics which is also a requirement for the course/program, 6 of the mathematics major pre-service teachers' had grade C_5 . 48 of them had grades better than C_5 while 7 of them had grades below C_5 . This put the average performance of the pre-service teachers' in mathematics major programme at grade C_4 .

The findings revealed that the performance of pre-service science teachers, regarding their entry grades in core mathematics is slightly one points better than the minimum entry grade of C_6 as indicated in the 2019 colleges of education entry requirements. Elective mathematics which is also a programme requirement, their performance was also two point better than the minimum entry grade of C_6 (NTCE and PRINCOP, 2019). On the part of per-service mathematics teachers' the indication was that a two point better than the minimum entry grade for mathematics and a two point better than the minimum entry grade for elective mathematics were recorded.

RESEARCH QUESTION ONE (2): WHAT IS THE PERFORMANCE IN TERMS OF GRADES OBTAINED BY MATHEMATICS AND SCIENCE TRAINEES' IN ALGEBRA II?

	Mathematics minor	Mathematics major
	Science Major	Science Minor
Grade	<u>Algebra II</u>	Algebra II
А	-	5
B+	1	8
В	3	6
C+	5	8
С	7	15
D+	15	12
D	11	7
E	17	14
Total	60	75

Source: End of first semester result, 2019

Table 5: End of first semester result of pre-service mathematics /science teachers' in Algebra II in Tamale colleges of education

As shown in table 5 the performance of pre-service mathematics/science teachers' performance in Algebra II indicates that 7 pre-service science teachers' scored grade C and 9 of them had grades better than C while 43 of them scored grades below C in Algebra II. On the whole, the average performance grade for them was D+. This is an equivalent grade for admission into colleges of Education. In addition, the performance of pre-service mathematics teachers' show that 12 of them scored grade C and 29 of them had grades better than C while 38 had below C. the average performance was C which is one point better than the minimum entry requirement in to colleges of education.

What this reveals is that the average performance of preservice science teachers' in Algebra II and their entry grades in both core mathematic and Elective mathematics is same with grade C_6 (D+) and that of their counterparts in the mathematics major programme is C_4 (C). This performance bring a lot of thing to the fore, this includes teacher mode of delivery, issues of students transition from Senior High School to colleges of Education students and many other variable.

V. CONCLUSIONS

This study seeks to bring to the forth the entering grades of mathematics and science pre-service teachers' in core mathematics and elective mathematics at the SHS and their performance in Algebra II in Colleges of Education. Based on the finding, the following conclusions were arrived.

On the average, the entry grade of pre-service mathematics /science teachers' was C_5 . This therefore meant that they met the minimum grade for the general entry requirement of grade C_6 for core mathematics

The average entry grade of pre-service mathematics /science teachers' was C_4 for elective mathematics.

The performance of pre-service mathematics/science teachers' in Algebra II in Tamale college of Education was average with a grade of C which is two points on the scale of 0-4 grade points.

VI. RECOMMENDATIONS

In view of the fact that per-service teachers' entry grade in core mathematics was relatively same as the minimum entry grade, it is recommended that senior high school mathematics teachers should re-look at the method and approaches they adopt in teaching mathematics. Some approaches such as Problem-Based learning. Constructivist, social constructivist can be integrated during teaching and learning of mathematics.

On issue of elective mathematics as a requirement with a minimum grade of C_6 . It is recommended that this should be enforced and possible be bought to C_5 for all students who will want to offer mathematics and science at the college of education.

Colleges of Education mathematics teacher should find suitable methods of teaching and learning of mathematics that will help senior high school students integrate effectively with the system of teaching at the colleges, this when is effectively than can enhance the performance of pre-service mathematic /science teachers not only in Algebra II but their general performance.

REFERENCES

 Abe, T. O., & Gbenro, O. S. (2014). A Comparison of Students' Attitudinal Variables towards Mathematics between Private and Public Senior Secondary Schools. Journal of Educational Policy and Entrepreneurial Research, 1(1), 32-39. Retrieved from http://jeper.org/index.php/JEPER/article/ viewFile/4/4

- [2] Anderson, J. R. (1990). Cognitive psychology and its implications (3rd ed.). New York
- [3] Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. Elementary School Journal, 90 (4), 449-466. https://doi.org/10.1086/461626
- [4] Carpenter, T. P., Fennema, E., Peterson, P. L., & Carey, D. A. (1988). Teachers' Pedagogical Content Knowledge of Students' Problem Solving in Elementary Arithmetic. Journal for Research in Mathematics Education, 19(5), 385-401. https://doi.org/10.2307/749173
- [5] Chick, H. L., & Baker, M. K. (2005). Investigating Teachers' Responses To Student Misconceptions. Proceedings Of The 29 Th Conference Of The International Group For The Psychology Of Mathematics Education, Vol. 2, pp. 249-256. Melbourne: Pme
- [6] Egodawatte, G., & Stoilescu, D. (2015). Grade 11 Students' Interconnected Use Of Conceptual Knowledge, Procedural Skills, And Strategic Competence In Algebra: A Mixed Method Study Of Error Analysis. European Journal Of Science And Mathematics Education, 3, 289-305
- [7] Enu, J., Agyman, O. K., & Nkum, D. (2015). Factors influencing students' mathematics performance in some selected colleges of education in Ghana. International Journal of Education Learning and Development, 3(3), 68-74
- [8] Institute of Education (20018). Curriculum for algebra II. Unpublished
- [9] Kant, I. (1900). Critique of pure reason. New York: Colonial Press (Original work published 1781).
- [10] Kendal (Eds.), the Future of Teaching and Learning of Algebra. The 12th ICMI Study (pp.1-20). Boston: Kluwer
- [11] Lipnevich, A. A., MacCann, C., Krumm, S., Burrus, J., & Roberts, R. D. (2011). Mathematics attitudes and mathematics outcomes of US and Belarusian middle school students. Journal of Educational Psychology, 103 (1), 105. Retrieved from https://www.researchgate.net/profile/Jeremy_Burrus/publication/232478953

- [12] Ngussa, B. M., & Mbuti, E. E. (2017). The Influence of Humour on Learners' Attitude and Mathematics Achievement: A Case of Secondary Schools in Arusha City, Tanzania. Retrieved from https://www.researchgate.net/publication/315776039
- [13] Patena, A. D., & Dinglasan, B. L. (2013). Students' Performance on Mathematics Departmental Examination: Basis for Math Intervention Program. Asian Academic Research Journal of Social Science & Humanities, 1(14), 255-268.
- [14] Phonapichat, P., Wongwanich, S., & Sujiva, S. (2014). An analysis of elementary school students' difficulties in mathematical problem solving. Procedia-Social and Behavioral Sciences, 116, 3169-3174. Retrieved from https://www.researchgate.net/profile/Suwimon_Wongwan ich/publication/270847106
- [15] Rumelhart, D. E. (1980) Schemata: The building blocks of cognition. In R. Spiro, B. Bruce, & W. Brewer (Eds.), Theoretical issues in reading comprehension, (pp. 33-58). Hillsdale, NJ: Erlbaum.
- [16] Rumelhart, D. E., & Ortony, A. (1977). The representation of knowledge in memory. In R. C. Anderson, R. J. Spiro, & W.E. Montague (Eds.) 99-136). Hillsdale, NJ: Erlbaum.
- [17] Sierpinska, A. 2008. Difficulties In learning Algebra. Diunduh. Retrieved from http://www.annasierpinska.wkrib.com/pdf/HongYueVani er111108.pdf
- [18] Stacey, K, & Chick, H. (2004). Solving the problem with algebra. In K. Stacey., H. Chick, & M.
- [19] Toka, Y., & Askar, P. (2002). The effect of cognitive conflict and conceptual change text on student's achievment related to first degree equation with one unknown. Hecettepe Universitise Kgitlan Fakkultesi Dergisi, 23, 211-217.
- [20] WAEC, (2013). Regulations and Syllabuses for the West African Senior High School Certificate Examination.
- [21] Wagner, S., & Parker, S. (1999). Advancing Algebra. In.B. Moses (ed). Algebraic Thingking. Reston, VA. NCTM.
- [22] Wittgenstein, L. (1958). Philosophical investigations (3rd ed.). New York: Macmillan.