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I. INTRODUCTION 

 

Dengue fever is a mosquito-borne tropical disease caused 

by the dengue virus. Dengue virus is transmitted by female 

mosquitoes mainly of the species Aedes aegypti and to a lesser 

extent, Aedes albopictus [1]. These mosquitoes have adjusted 

to human neighborhood with larval habitats and oviposition in 

natural and artificial (e.g., rock pools, tree holes, blocked 

drains, pot plants and food and beverage containers, and leaf 

axis) collections in the urban and sub-urban environment [2]. 

Dengue is caused by a virus of the flaviviridae family and 

there are five distinct, but closely related, serotypes of the 

virus that cause dengue (DENV-1, DENV-2, DENV-3, 

DENV-4 and DENV-5). Recovery from infection with one 

serotype provides lifelong immunity to that serotype, but only 

short-term immunity to the others. Subsequent infection with a 

different type increases the risk of severe complications.[9] 

Dengue can be brought on by any of four viral serotypes 

(Dengue Virus (DENV) 1-5), and is transmitted by day-biting 

urban-adapted Aedes mosquito species [3]. After an 

incubation period ranging from 4 to 14 days, patients normally 

can encounter a range of symptoms, from a sub-clinical 

disease to debilitating but transient Dengue Fever (DF) to life-

threatening Dengue Hemorrhagic Fever (DHF) or Dengue 

Shock Syndrome (DSS) [4,5]. The most severe forms of 

dengue disease are DHF and DSS. They are life debilitating, 

and youngsters with DENV disease are especially at danger of 

advancing to severe DHF/DSS [6]. Until now there is no 

specific treatment or vaccine for dengue. 

DF is a major public health concern and also re-emerging 

infectious disease that affects millions of people worldwide. It 

Abstract: We investigated the transmission of Dengue disease and the different ways they can be controlled. We 

analyzed the dynamics of Dengue using a system of eight differential equations where the first five compartments are for 

human population and the last three compartments for mosquitoes with reduction of breeding sites, use of ITN’s, vaccines 

and treatment as control strategies in limiting the disease. We obtained the equilibrium points of the model and 

investigated their stabilities. Our analysis shows that if the basic reproduction number < 1, the disease free equilibrium 

point is stable, but if > 1, then the disease free equilibrium is unstable, In such case the endemic state has a unique 

equilibrium. This means that re-invasion of the disease is possible, and the Dengue disease persists in the human 

population. The result of our work showed that reduction of mosquito breeding sites, spraying of insecticide, treatment in 

form of vaccines, treating early infected humans, sleeping under treated nets are best practices that aids dengue 

prevention and control. 
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is also a major public health concern for over half of the 

world’s population and is a main source of hospitalization and 

death especially for youngsters in endemic nations. The 

majority of the poor nations are particularly vulnerable to the 

transmission of dengue infection [6]. This vector borne disease 

always can be found in urban and suburban areas of regions 

such as Africa, South-East Asia, Americas, Eastern 

Mediterranean and Western Pacific [7]. It is assessed that 

consistently, there are 70 million dengue infections, 36 million 

cases of DF and 21 million cases of DHF and DSS, with more 

than 20000 deaths per year [7]. 

 

 

II. MODEL FORMULATION 

 

We assume that the disease can only be transmitted by the 

primary vector(Aedes aegypti), and that those recovered can 

still go back to being susceptible. We also assumed that those 

undergoing treatment can also die of the disease. Furthermore, 

individuals can recover from the infection even without being 

treated. The study was carried out in the tropical region. We 

have our Classes as;  . Let h 

=  be rate of progression from susceptible humans to 

exposed humans. And let v =   be rate of progression 

from susceptible mosquitoes to exposed mosquitoes.  

 
Figure 1: flow diagram for the model 

 

MODEL EQUATION 
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INVARIANT REGION 

 

We start by determining the invariant region to check if 

the model is biologically meaningful and that all solutions of 

(1) are positive for all t  0 and 

are attracted in that region. 

This region can be obtained by this theorem. 

Theorem 1 

The solutions of the system (1) are feasible for all t > 0 if 

they enter the invariant region 

 
Let Ώℎ  = (Sh ,Eh, Ih, IhT , Rh )and Ώm= ( Sv, Ev, Iv ). Then 

since  

we have: 

Ώ = (Sh ,Eh, Ih, IhT , Rh, Sv, Ev, Iv) ∈ R+
8 

be any solution of 

the system (1) with non 

negative initial conditions, ie at t=0, Sh>0, Eh≥0, Ih≥0, 

IhT≥0, Rh≥0, Sv≥0, Ev≥0, Iv≥0. 

In the absence of disease (dengue) that is Eh, Ih, IhT = 0, 

equation 4.2.3 becomes 

≤  h  -  Nh 

+ Nh ≤  h    (2) 

The integrating factor for (2) is (IF) =  = 
 

Multiplying both sides of (2) by  and solving we 

have; 

All the feasible solution set of the human population of 

the model (4.2.1) enters the region. Ώℎ = { (Sℎ, Eℎ, Iℎ, IℎT , Rℎ) 

∈ R+
5 
: Sh > 0, Eh ≥ 0, Ih≥ 0, IhT ≥ 0, Rh  ≥ 0, Nh ≤   

Similarly the feasible solution set of the mosquito 

population enters the region 

Ώm=      (Sv, Ev, Iv,) 3
+
 : Sv > 0, Ev ≥ 0, Iv ≥ 0, Nm ≤   

 

 

III. LOCAL STABILITY OF THE DISEASE-FREE 

EQUILIBRIUM 

 

At DFE; 

Sh = ,   Eh = 0,  Ih = 0, Rh = 0, Sv =  ,  Ev = 0, Iv = 0, 

Also 

 

 

The Jacobian matrix is given as 

 

 
 

 

 

- -    4.2.1 
 (1) 

J = 
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Evaluating at DFE we have; 

 

 

Evaluating |A – I|, we have 

1 = , 2 =  , 3 = (- , 4 = 

,  5 = ,  6 = 

 

7 =        8 =  

Here, the system is asymptotically stable since all its 

eigen values are negative. 

 

 

IV. BASIC REPRODUCTION NUMBER R0 

 

The basic reproduction number (reproduction ratio) R0is 

given by 

R0 = (FV
-1

) 

Where (A) denotes the spectral radius of a matrix A and 

the spectral radius, (FV
-1

), is the biggest nonnegative eigen 

value of the next generation matrix. 

From the system (1), Fi and Viare defined as 

 

Fi =                                (3) 

 

Vi =      (4) 

 

The partial derivatives of (3) with respect to (Eh, Iℎ, IℎT , 

Ev ,Iv)and the Jacobian matrix of Fi at the disease-free 

equilibrium point is: 

 

F =       (5) 

 

Similarly, the partial derivatives of (4) with respect to (Eh, 

Ih, IhT , Ev , Iv )and the Jacobian matrix of Vi is: 

V  =     4.5.5 

 

The inverse of matrix V is given as: 

  
                                                                                4.5.6 

To compute FV
-1 

FV
-1

= [F]  [V
-1

] 

Let: a =      b =   c =    

e =    f =   g =   h =     

i = k =     l =  

 

FV
-1

 =                    4.5.7. 

 

From (4.5.7), the eigen values can be calculated as to 

determine the basic reproduction number 

R0 by taking the spectral radius (dominant eigen value) of 

the matrix FV
-1

. 

It is thus computed by|A − I| = 0, we have 

 

FV
-1

 =          = 0 

 

1 = 0, 2 = 0, 3 = 0 

 

  4.5.8 

     J = 

-   3 

- - - 4.5.3 

- -    -      4.5.4 

V
-1

= 

4.5.6 
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 4.5.9 

0 =  

          4.5.10 

                                             4.5.11 

 

 

V. NUMERICAL SIMULATION 

 

ESTIMATION OF PARAMETERS 

 

Estimated parameter values and their sources for model 

(1) 

PARAMETER VALUE SOURCE 

 

700,025 [14] 

 

1.460  [14] 

 

0.004 [12] 

 

0.08333 [12] 

 

0.1429 [12] 

 

0.00019 [14] 

C 0.75 [14] 

 

0.85 Estimated 

 

0.0723 Estimated 

 

0.533 Estimated 

 

0.333 [16] 

 

23350 [14] 

 

0.09091 [14] 

 

0.75 [12] 

 

0.86 Estimated 

R 0.59 Estimated 

 

0.86 [12] 

 

0.083 [16] 

 

0.029 [14] 

Table 1 

The initial conditions are: 

 

406,250 Estimated 

 

369,150 Estimated 

 

156,170 Estimated 

 

104,114 Estimated 

 

72,056 Estimated 

 

40,200 Estimated 

 

32,000 Estimated 

 

21,200 Estimated 

Table 2 

The simulation was run in days. 

 
Figure 4.1: Graph of the mosquito population in the presence 

of control measures. Since this is a disease free state, the 

number of infected humans is very small, thus the number of 

the mosquitoes that are infected is in the decline and the 

control measures adopted by the humans helped to ensure that 

the whole mosquito population continues to reduce 

 
Figure 4.2: Transmission dynamics in an endemic situation on 

mosquito population 

The figure above is a simulation of the transmission 

dynamics in an endemic situation. As shown on the graph, 

though the infection keeps increasing massively, the control 

measures adopted are keeping the mosquito population under 

check. 

 
Figure 4.3: Transmission dynamics in an endemic situation on 

human population 

The figure above is a simulation of the transmission 

dynamics in an endemic situation. As shown on the graph, 

though the exposed human population keeps increasing 
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massively, the control measures adopted are keeping the 

disease under check. 

 
Figure 4.4:  Transmission dynamics in an endemic situation of 

the whole population 

The figure above is a simulation of the transmission 

dynamics in an endemic situation. As shown on the graph, 

though the exposed human population keeps increasing 

massively, the control measures adopted are reducing the 

mosquito population and also the disease. 

 
Figure 4.5: graph of the human population only 

Here, we considered what happens in the human 

population alone. The susceptible humans are increasing and 

with time it didn’t decrease. Meanwhile, the exposed and 

infected classes are kept under check as a result of control 

measures being adopted. 

 

 

VI. CONCLUSION 

 

We derived and analyzed a mathematical model to better 

understand the transmission and control of dengue in the 

population. The model considered a varying total human 

population that Incorporated recruitment of new individuals 

into the susceptible class through either birth or Immigration. 

Mathematically, we modeled dengue as an 8-dimensional 

system of ordinary differential Equations. We first showed 

that there exists a domain where the model is 

epidemiologically and mathematically well-posed. We defined 

the basic reproduction number, , which provides the 

expected number of new infections (in mosquitoes or humans) 

from one infectious individual (human or mosquito) over the 

duration of the infectious period given that all other members 

of the population are susceptible. We proved if <1, the 

disease cannot persist in the country and when >1the 

disease can persist. We perform stability analysis of the 

model. We have Proved that the disease-free equilibrium is 

locally asymptotically stable if <1and unstable when >1. 

In chapter four, the analysis for dengue showed that the 

disease-free and Endemic equilibrium points are 

asymptotically stable. The numerical analysis of the model 

Suggested that the most effective strategies for controlling or 

eradicating dengue are the use of Insecticide-treated bed nets 

and indoor residual spraying and prompt and effective 

diagnosis and treatment of infected individuals. The effect of 

reducing mosquito bites has great impact in the reduction of 

the spreading of the disease (dengue), but the combination of 

two interventions can play a bigger role in reducing or 

eradicating the transmission of the disease and dengue related 

deaths in the population. 
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