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I. INTRODUCTION 

 

Classical plate theory (CPT) buckling analysis is 

dominated by energy methods such as Ritz, Galerkin, Raleigh, 

Raleigh-Rit, minimum potential energy, work-error, etc. 

(Ugural, 1999, Ventsel and Krauthammer, 2001 and 

Ibearugbulem et al., 2014). Most of these energy methods 

applied single orthogonal deflection function. This make it 

difficult for deflection function to be separated into two 

components. Most previous research works on CPT analysis 

on rectangular plates as seen from the literature rely on this 

single orthogonal deflection function (Hutchinson, 1992, 

Jianqiao, 1994, Ugural, 1999, Ventsel and Krauthmmer, 2001, 

Wang et al., 2002, Taylor and Govindjee, 2004, Szilard, 2004, 

Jiu et al., 2007, Erdem et al., 2007, Ezeh et al., 2013, 

Ibearugbulem, 2014). Ibearugbulem et al. (2016) tried to ease 

this difficulty of using single orthogonal function by 

separating it into two independent distinct functions 

(w ) but was based on assumptions. Based on some 

previous works on free-vibration analyses of  thin rectangular 

plate that were clamped on all edges using numerical 

approaches (Lee, 2004, Werfalli and Karaid, 2005 and Misra, 

2012) and energy variational methods (Lalet al., 2009, Shu et 

al., 2007), one could say that works on areas of vibration are 

Abstract: This paper presents an exact approach to buckling analysis of thin rectangular plates under vibration. Total 

potential energy functional for a thin rectangular plate subjected to both vibration and buckling loads was formulated 

from principles of theory of elasticity using split-deflection approach. General variation was applied on the total potential 

energy with respect to deflection function to obtain the fourth order governing equation of equilibrium of forces acting on 

the plate. This fourth order differential equation was solved, and the function (deflection) that satisfied it was obtained 

with unknown coefficients. This deflection function is of trigonometric family. This was followed by the application of 

direct variation of the total potential energy functional with respect to coefficient of deflection to obtain the formula for 

critical buckling load for plate. Numerical analyses for plate with one edge simply supported and the other three edges 

clamped (CCCS), and a plate with two adjacent edges clamped and the other two edges simply supported (CCSS) were 

performed. The non-dimensional critical buckling load results from the present work under no vibration for various 

aspect ratios were compared with the ones from the work of Ibearugbulem. The maximum percentage differences between 

the results of the present and past for CCSS is 0.036. For CCCS plates the maximum recorded percentage difference is 

0.024. These percentage differences show close agreements. Also, the non – dimensional critical buckling load for 

rectangular CCSS and CCCS plates under vibration at various aspect ratios were determined. Hence, the present 

trigonometric shape functions and the equation for non dimensional buckling load under vibration developed are reliable 

and are recommended for use in classical analysis. 
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complex and difficult to analyze. Several works on the 

buckling analysis of plate had been done in the past. 

Ibearugbulem et al.(2016) derived an equation for critical 

buckling load for rectangular plates using the Work – error 

and Split – deflection methods given in Equation (1) as: 

 
In evolving the split-deflection method, Ibearugbulem et 

al.(2016) assumed that the general deflection, is split into 

and . That is: 

  

  

Where and  are x and y directional components of 

the deflection respectively,   are shape functions in 

x and y direction respectively, and A is deflection coefficient. 

These plates (CCSS and CCCS plates) are subjected to 

lateral loads on both sides at x – axis as shown in Figures 1 & 

2. 

 
Figure 1: CCSS plate under 

lateral loads 

Figure 2: CCCS plate under 

lateral loads 
The boundary conditions for these plates are at x – axis 

are: 

w(R   

w(R   

The main reason for this paper is to provide easy and less 

stressful method of plate analysis, using it to develop an 

equation for critical buckling load under vibration and 

trigonometric shape functions of a thin rectangular plate of 

particular boundary condition. 

 

 

II. TOTAL POTENTIAL ENERGY 

 

The strain energy, U is defined as: 

 
Whre σxx and σyy, are normal stresses along x and y 

directions, εxx and εxx are normal strains along x and y 

directions, and xy and γxy are the shear stress and strain within 

the x-y plane respectively. 

But  

 

 

 

 

 

 
Where E is the Young’s modulus of elasticity and u is the 

Poisson’s ratio of the plate. 

The external work under buckling and vibration is given 

as: 

 
Substituting Equations 2a, 4a, 4b, 4c, 5a, 5b and 5c into 

Equation 3 gives strain energy - deflection relationship as: 

 
Similarly, substituting Equations 2b, 4a, 4b, 4c, 5a, 5b 

and 5c into Equation 3 gives strain energy - deflection 

relationship as: 

 
Where t is the thickness of the plate and D if the flexural 

rigidity of the plate defined as:  

 
Substituting Equation 2 into Equation 6 gives: 

 
Similarly, substituting Equation 2b into Equation 6 gives: 

 
Adding Equation 7a and Equation 9a algebraically 

gives the total potential energy functional as: 

 

In the same way, algebraic summation of Equation 7b and 

Equation 9b gives: 

 

Equation 10a and Equation 10b can be written in terms on 

non dimensional coordinates R and Q as: 

 

 
 

 

Where the non dimensional coordinates R and Q are the 

ratios of dimensional coordinates x and y to the lengths of the 

plate along x and y directions. That is R is ratio of x to a (that 

is R = x/a) while Q is the ratio of y to b (that is Q = y/b). 

Aspect ratio, p is defined as the ratio of b to a (p = b/a). 
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GENERAL VARIATION OF THE TOTAL POTENTIAL 

ENERGY 

 

Minimization of the total potential energy functional with 

respect to deflection function gives the governing differential 

equation of forces in equilibrium for the plate. Equation 11a 

can be modified as: 

 

Where: 

 

 
Thus minimizing Equation 12a with respect to wx gives: 

 
Carrying out the integration of Equation 14 with respect 

to Q gives: 

 
Where c1 is a constant. 

Similarly, minimizing Equation 12b with respect to wy 

gives: 

 
Carrying out the integration of Equation 16 with respect 

to R gives: 

 
Where c2, c3 and c4 are constants. 

For cases of pure buckling (that is in the absence of 

inertia force), Equation 15 and Equation 17 become: 

 
The ready solutions for the integrands of Equation 18 and 

Equation 19 are: 

 
Where d0, d1, d2,d3, d4, d5, d6 and d7 are integration 

constants, and 

 
Transforming Equation 20 in trigonometric form gives: 

 
Where a0 = d0, a1 = d1, a2 = d2 + d3 and a3 = id2 – id3 

Similarly, transforming Equation 21 in trigonometric 

form gives: 

 
Where b0 = d4, b1 = d5, b2 = d6 + d7 and b3 = id6 – id7 

Substituting Equation 23 and Equation 24 into Equation 

2a gives: 

 

DIRECT VARIATION OF THE TOTAL POTENTIAL 

ENERGY 

 

Formula for analysis is usually obtained after 

minimization of the total potential energy functional with 

respect the coefficient of deflection. Hence, minimizing 

Equation 11b with respect to deflection coefficient gives: 

 
Rearranging Equation 26 gives: 

 
Under free – vibration only, the numerator of Equation 27 

is zero. The vibration frequency at free vibration is natural 

frequency, λ.Thus: 

 
Rearranging Equation 28 gives: 
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The frequency of vibration  is alway a fraction of the 

natural frequency. Its range is 0 ≤  ≤ λ.  That is: 

 
Where n = resonating frequency ratio 

 
Substituting Equation 30 into Equation 29 gives: 

 
Substituting Equation 32 into Equation 27 gives: 

 
This Equation 33 is the formula for calculating the non-

dimensional critical buckling load for a rectangular plate 

under vibration. 

 

 

III. NUMERICAL ANALYSES 

 

Analyze a classical rectangular thin rectangular isotropic 

plate with: 

 Three edges clamped and one edge simply supported 

(CCCS) using trigonometric function for both . 

 Two adjacent edges clamped and the other two edges 

simply supported (CCSS) using trigonometric function for 

both . 

 

FOR CCCS PLATE 

 

After satisfying the boundary condition for cccs plate the 

deflection components obtained are:                             

 

  

Where g1 = 4.49340946 

From Equation34a and Equation 34b the shape functions 

are: 

 
 

 

 

FOR CCCS PLATE 

 

After satisfying the boundary condition for cccs plate the 

deflection components obtained are:                                    

 

    

Where g1 = 4.49340946 and g2 = 4.49340946 

From Equations36a and Equation 36b the shape functions 

are: 

  

  

With these components of shape functions the stiffness 

coefficient are calculated and tabulated on Table 1 

 

 
Table 1: Stiffness coefficients for the two plates 

 
 

 

IV. RESULTS AND DISCUSSION 

 

The split deflection total potential energy functional for 

thin rectangular plate loaded simultaneously with in-plane and 

inertia loads was formulated as shown on Equation 10a, 

Equation 10b, Equation 11a and Equation 11b. The equations 

are so unique such that it can easily be seperated (uncoupled). 

This fit was evident when general variation was applied on it. 

The governing equations obtained after general variation with 

respect to wx and wy were shown on Equation 14 and Equation 

16. These equations were reduced to easily solvable equations 

as shown on Equation 18 and Equation 19. Upon solving 

Equation 18 and Equation 19, the trigonemetric expressions 

for wx and wy were obtained. See Equation 23 and Equation 24 

for expressions for wx and wy. Equation 25 is the general 

orthogonal equation of deflection of rectangular plate under 

buckling load. 

After direct variation was applied on the total potential 

energy functional, the formula for calculating the buckling 

load when the plate is acted upon by in-plane and inertia 

loads. This formula is shown on Equation 33. It is an easy to 

use formula. Two cases of plates of different boundary 

conditions were analysed. After satisfying the boundary 

conditions for cccs and ccss plates their unique shape 

functions were determined as shown on Equation 35a, 

Equation 35b, Equation 37a and Equation 37b. The formulas 

for calculating the buckling loads for cccs and ccss plate under 

both in-plane and inertia loads are obtained by substituting 

Equation 39 and Equation 41 into Equation 33. They are 

vrespectively given as: 
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It is noticed that at zero vibration (n = 0), the critical 

buckling equations obtained herein are the same with those 

from earlier studies. However, the equations from the present 

study differ from the onesobtained by previous study when 

inerial load is applied (n . This difference accounts for the 

effect of vibration on buckling of rectangular plates. 

The non-dimensional critical buckling load results of this 

present work when inertia load was absent (n = 0) for aspect 

ratios (1≤ P ≤ 2) where compared with the results from the 

work of Ibearugbulem et al.(2014).These comparisons were 

presented on Table 2 and Table 3. The percentage differences 

between the results of the present and past for CCSS and 

CCCS plates ranges from 0.000 to 0.036 and 0.018 to 0.024 

respectively. This showsthat the differences are insignificant. 

                                                                                (n  

 

Aspect 

ratio 

(P = b/a) 

 

Ibearugbulem et al. 

(2014) 

 

 

Present 

study 

 

Percentage 

difference   

 

1.0 89.354 89.333 0.024 

1.1 71.131 71.115 0.022 

1.2 59.060 59.047 0.022 

1.3 50.735 50.724 0.022 

1.4 44.795 44.785 0.022 

1.5 40.433 40.424 0.022 

1.6 37.148 37.140 0.022 

1.7 34.620 34.613 0.020 

1.8 32.637 32.631 0.018 

1.9 31.056 31.050 0.019 

2.0 29.777 29.771 0.020 

Table 2: Non - dimensional critical buckling loads for CCCS 

Rectangular plates under uniform unilateral stress 

                                                                                        ( n  

 

Aspect 

ratio 

(P = 

b/a) 

 

Ibearugbulem et al. 

(2014) 

 

 

Present 

study 

 

Percentage 

difference 

 

1.0 64.736 64.737 0.002 

1.1 54.133 54.134 0.002 

1.2 46.916 46.917 0.002 

1.3 41.806 41.806 0.000 

1.4 38.066 38.067 0.003 

1.5 35.253 35.253 0.000 

1.6 33.074 33.086 0.036 

1.7 31.382 31.382 0.000 

1.8 30.018 30.018 0.000 

1.9 28.910 28.910 0.000 

2.0 27.997 27.997 0.000 

Table 3: Non - dimensional critical buckling loads for CCSS 

Rectangular plates under uniform unilateral stress 

This paper presents the non-dimensional critical buckling 

load results of CCSS and CCCS plates when inertia loads 

were applied (n ≠ 0) for aspect ratios (1≤ p ≤ 2)  on Table 4 

and table 5 show that as aspect ratio (P = 
b/

a) increases from 

1.0 to 2.0 at each resonating frequency ratio / inertia load (n) 

ranging from 0 to 0.9, non –dimensional critical buckling load 

decreases, thereby causing the plate to get more slender. 

Furthermore, as resonating frequency ratio (n) increases from 

0 to 0.9 at each aspect ratio (P = b/a ) ranging from 1.0 to 2.0 , 

non-dimensional critical buckling load also decreases, thereby 

weakening the strength of the plate and hence requires less 

effort to cause it to buckle. At resonating frequency ratio (n = 

1) at all aspect ratios, non-dimensional critical buckling load 

equals zero, [( ) = 0].At this stage, the plate buckles 

without buckling load. 

Table 4: Non – dimensional Critical Buckling load for 

Rectangular CCSS Plate under Vibration 

Table 5: Non – dimensional Critical Buckling load for 

Rectangular CCCS Plate under Vibration 

 

 

V. CONCLUSION 

 

The conclusion is drawn that with the close agreement of 

the results obtained from past and present works at n = 0, it 

follows that the results of non – dimensional critical buckling 

load for n – values and their corresponding aspect ratios 

presented in Table 4 and Table 5 (for which there are no other 

existing results to compare with in literature) are also correct. 

  

Non – dimensional critical buckling load  ( ) 

 Resonating frequency ratio (n) 

Aspect 

ratio 

(P=b/a

) 

 

0 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

 

0.7 

 

0.8 

 

0.9 

 

1.

0 

1.0 61.7

06 

61.0

89 

59.2

37 

56.1

52 

51.8

33 

46.2

79 

39.4

92 

31.4

70 

22.2

14 

11.7

24 

0 

1.1 51.5

68 

51.0

53 

49.5

06 

46.9

27 

43.3

17 

38.6

76 

33.0

04 

26.3

00 

18.5

65 

9.79

8 

0 

1.2 44.6

24 

44.1

78 

42.8

39 

40.6

08 

37.4

84 

33.4

68 

28.5

59 

22.7

58 

16.0

65 

8.47

9 

0 

1.3 39.6

77 

39.2

80 

38.0

90 

36.1

06 

33.3

29 

29.7

58 

25.3

93 

20.2

35 

14.2

84 

7.53

9 

0 

1.4 36.0

37 

35.6

77 

34.5

96 

32.7

94 

30.2

71 

27.0

28 

23.0

64 

18.3

79 

12.9

73 

6.91

1 

0 

1.5 33.2

85 

32.9

52 

31.9

54 

30.2

89 

27.9

59 

24.9

64 

21.3

02 

16.9

75 

11.9

83 

6.32

4 

0 

1.6 31.1

54 

30.8

43 

29.9

08 

28.3

50 

26.1

70 

23.3

66 

19.9

39 

15.8

89 

11.2

16 

5.91

9 

0 

1.7 29.4

72 

29.1

77 

28.2

93 

26.8

19 

24.7

56 

22.1

04 

18.8

62 

15.0

31 

10.6

10 

5.60

0 

0 

1.8 28.1

20 

27.8

39 

26.9

95 

25.5

89 

23.6

21 

21.0

90 

17.9

97 

14.3

41 

10.1

23 

5.34

3 

0 

1.9 27.0

18 

26.7

48 

25.9

37 

24.5

86 

22.6

95 

20.2

63 

17.2

91 

13.7

79 

9.72

6 

5.13

3 

0 

2.0 26.1

07 

25.8

46 

25.0

62 

23.7

57 

21.9

30 

19.5

80 

16.7

08 

13.3

14 

9.39

8 

4.96

0 

0 

 

 

 

Non – dimensional critical buckling load  ( ) 

 Resonating frequency ratio (n) 

Aspect 

ratio (P= 

b/a) 

 

0 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

 

0.7 

 

0.8 

 

0.9 

 

1.0 

1.0 89.

088 

88.1

97 

85.

525 

81.

070 

74.

834 

66.

816 

57.

016 

45.

435 

32.

072 

16.

927 

0 

1.1 70.

642 

69.9

36 

67.

816 

64.

284 

59.

339 

52.

982 

45.

211 

36.

027 

25.

431 

13.

422 

0 

1.2 58.

378 

57.7

94 

56.

043 

53.

124 

49.

038 

43.

784 

37.

362 

29.

773 

21.

016 

11.

092 

0 

1.3 49.

890 

49.3

91 

47.

874 

45.

400 

41.

907 

37.

417 

31.

929 

25.

444 

17.

960 

9.4

79 

0 

1.4 43.

812 

43.3

74 

42.

059 

39.

869 

36.

802 

32.

859 

28.

040 

22.

344 

15.

772 

8.3

24 

0 

1.5 39.

333 

38.9

39 

37.

759 

35.

793 

33.

039 

29.

499 

25.

173 

20.

060 

14.

160 

7.4

73 

0 

1.6 35.

948 

35.5

89 

34.

511 

32.

713 

30.

197 

26.

961 

23.

007 

18.

334 

12.

941 

6.8

30 

0 

1.7 33.

336 

33.0

03 

32.

002 

30.

336 

28.

002 

25.

002 

21.

335 

17.

001 

12.

001 

6.3

34 

0 

1.8 31.

281 

30.9

68 

30.

030 

28.

466 

26.

276 

23.

461 

20.

020 

15.

953 

11.

261 

5.9

43 

0 

1.9 29.

637 

29.3

41 

28.

452 

26.

970 

24.

895 

22.

228 

18.

968 

15.

115 

10.

669 

5.6

31 

0 

2.0 28.

303 

28.0

20 

27.

171 

25.

756 

23.

775 

21.

227 

18.

114 

14.

435 

10.

189 

5.3

78 

0 
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Hence, the present equations developed are reliable and 

are recommended for use in classical analysis. For future 

studies, it is recommended that buckling analysis of a thin 

rectangular plate under vibration outside these aspect ratios 

should be carried out using this present method. 

 

 

REFERENCES 

 

[1] Erdem , C. lmrak and Ismail Gerdemeli (2007). The 

problem of isotropic  rectangular plate with four clamped 

edges. S-adhan-a. Vol. 32, part 3, pp. 181 – 186. 

[2] Ezeh, J. C., Ibearugbulem, O. M., Njoku, K.O., and Ettu, 

L.O. (2013). Dynamic Analysis of Isotropic SSSS plate 

using Taylor Series Shape Function in Galerkin’s 

Functional. International Journal of Emerging Technology 

and Advanced Engineering, 3 (5) : 372 – 375. 

[3] Hutchinson, J.R. (1992). On the bending of rectangular 

plates with two opposite edges simply supported . J. Appl 

.Mech. Trans. ASME 59:679 – 681. 

[4] Ibearugbulem, O.M. (2014). Using the product of two 

mutually perpendicular truncated polynomial series as 

shape function for rectangular plate analysis. International 

Journal of Emerging Technologies and Engineering ( 

IJETE). ISSN: 2348 – 8050, ICRTIET – 2014. 

Conference proceeding, 30th – 31st August 2014, 1- 4 

[5] Ibearugbulem, O.M., Ezeh, J.C. and Ettu, L.O. (2014). 

Energy Methods in Theory of Rectangular plates (Use of 

Polynomial Shape Functions), Liu House of Excellence 

Venture – Imo State, Nigeria. 

[6] Ibearugbulem, O. M., Ibearugbulem, C.N., HabibMomoh 

and Asomugha, U.C. (2016). Buckling Analysis of 

Rectangular Plate by Split – Deflection Method. 

International Journal of Scientific and Research 

Publications, Vol. 3, Issue 5. 

[7] Jiu, Hiu Wu, A.Q. Liu, and H. L. Chen (2007). Exact 

Solutions for Free – Vibration  Analysis of Rectangular 

Plates. Journal of Applied Mechanics. Vol. 74: PP 1247 -

1251 

[8] Lal, R., Kumar, Y. & Gupta, U.S. (2009) Transverse 

Vibrations of Non – Homogenous Rectangular Plates of 

Uniform Thickness using Boundary Characteristics 

Orthogonal Polynomials. Int .J. of Appl .Maths and 

Mech., 6 (14), 93 -109. 

[9] Lee, S. J. (2004). Free- Vibration Analysis of plates by 

using a Four- Note Finite Element Formulated with 

Assumed Natural Transverse Shear Strain. Journal of 

Sound and  Vibration, 278, 657 – 684. 

[10] Misra, R.K.(2012). Static and Dynamic Analysis of 

Rectangular Plate using Multiquadric Radial Basic 

Function. International Journal of Management, I .T and 

Engineering, 2 (8), 166 – 178 

[11] Szilard, R. (2004).Theories and Applications of Plate 

Analysis. New Jersey: John Wiley & sons Inc. 

[12] Shu, C., Wu, W.X., Ding, H. &Wang C.M. (2007). Free 

vibration Analysis of Plates using Least – Square – Based 

Finite Difference Method. Comput. Methods Appl. Mech. 

Engrg., 196, 1330 – 1343. 

[13] Taylor, R.L. and Govindjee, S.(2004). Solution of 

Clamped Rectangular Plate Problems, Communications in 

Numerical Methods in Engineering, 20 : PP. 757 – 765. 

[14] Ugural, A.C.(1999). Stresses in Plates and Shells, 2nd ed. 

Singapore: McGraw- hill 

[15] Ventsel, E. and T. Krauthammer (2001). Thin Plates and 

Shells: Theory, Analysis and Applications. New York: 

Marcel Dekker. 

[16] Wang, C.M., Y.C. Wang and J.N. Reddy (2002). 

Problems and remedy for the Ritz  method in determining  

stress resultant  of corner supported  rectangular plates . 

Comput.Struct. 80:145 – 154. 

[17] Werfalll, N.M. &Karaid, A.A. (2005). Free – Vibration 

Analysis of Rectangular Plates using Galerkin – Based 

Finite Element Method. International of Mechanical 

Engineering, 2(2), 59- 67. 

[18] Ye, Jianqiao (1994). Large deflection of imperfect plates 

by iterative BE-FE method. Journal of Engineering 

Mechanics, Vol. 120, N0.3 (March). 

 


