The Split Decompositions Of Finite Separable Metacyclic 2-Group

D. Samaila

M. Pius Pur

Department of Mathematics, Adamawa State University, Mubi

Abstract: Given a finite separable metacyclic 2-group G, it is always possible to express G as a semidirect product of a cyclic group with another cyclic group. In this paper, we implement the use of Group Application Package (GAP) Software to determine the split decompositions of a finite separable metacyclic 2-group up to isomorphism, where the dihedral group D_{16} of order 2^5 and its presentations was derived and shown to be separable. The finite groups were generated and expressed as the semidirect product of cyclic subgroups.

Keywords: Complement, Metacyclic group, Dihedral group; Separable, Semidirect product, Split decompositions

I. INTRODUCTION

A subgroup *N* of a group *G* is complemented in *G* if there exists another subgroup *H* of *G* such that G = NH and whenever $x \in N$ and $x \in H$, then x = 1, the identity element of *G*. i.e. $N \cap H = \{1\}$. If in addition, $N \triangleleft G$, then *G* is said to split over *N* and is written as G = [N]H. In this case, we say that *G* is the semidirect product of its subgroups *N* and *H*. If further, $G = [N]H = [N_1]H_1$, with $N \cong N_1$ and $H \cong H_1$, then the two split decompositions [N]H and $[N_1]H_1$ are said to be isomorphic. A group is said to be separable if it splits over a nontrivial proper normal subgroup and inseparable otherwise.

Any metacyclic *p*-group can be presented by the relation $G = \langle x, y | x^{p^n} = 1, y^{p^m} = x^t, x^y = x^r \rangle$ [1]. If *G* is separable, then by the same result, we can make *t* to be 0 so that $G = \langle x, y | x^{p^n} = y^{p^m} = 1, x^y = x^r \rangle$. In this case, $G = [\langle x \rangle] \langle y \rangle$ and in our result, we have shown that the separable metacyclic *p*-groups with *p* odd have split decompositions isomorphic to *G*. However, this is not the case for all metacyclic 2-groups, particularly for Dihedral groups D_n of order 2*n*. For instance, consider the dihedral group $D_4 = \langle \alpha, \beta | \alpha^4 = \beta^2 = 1, \alpha^\beta = \alpha^3 \rangle$ of order 8. While $D_4 = [\langle \alpha^2, \beta \rangle] \langle \alpha \beta \rangle$,

with $\langle \alpha^2, \beta \rangle$ isomorphic to the Klein 4-group. For general presentation and more information, see [2].

This paper is a review of the work of Kirtland, [10]. Our aim is to study the finite separable metacyclic 2-group, the necessary and sufficient conditions under which a separable metacyclic 2-group has all its split decompositions isomorphic as discussed by Kirtland and then implement the use of GAP to determine its splits decompositions. The concept of metacyclic 2-groups and metacyclic *p*-groups in general, have been extensively studied by many authors. For more information and results, see the work of Brandle and Verardi [3], Lie dhal [4], King [1], Beuerle [5], Hempel [6], and Sire [7]. In particular, separable metacyclic groups have been studied by Sim [8] and Jackson [9]. However, the simple condition for which a separable metacyclic 2-group has all its split decompositions isomorphic has not been directly addressed by these authors.

We used standard notations and for a *p*-group *G*, the subgroup Ω_i of *G* is given by $\Omega_i(G) = \langle g \mid g \in G, g^{p^i} = 1 \rangle$. The center of a group *G* is denoted by *Z*(*G*) and $\Phi(G)$ will denote its Frattini subgroup. Our research is limited to finite groups.

We shall see from the following theorem that if G is a metacyclic p-group for p an odd prime, then all its split decompositions are isomorphic.

THEOREM 1.1: Given a separable metacyclic p-group G for p an odd prime, then all its split decompositions are isomorphic [10].

PROOF. By [1], we have $G = \langle x, y | x^{p^n} = y^{p^m} = 1, x^y = x^r \rangle$ and so, $G = [\langle x \rangle] \langle y \rangle$. Let G = [N]H be another split decomposition for G. If G is Abelian, then $G = \langle x \rangle \times \langle y \rangle = N \times H$ and without any loss of generality, we get by [10], that $N \cong \langle x \rangle$ and $H \cong \langle y \rangle$.

Assume *G* is not Abelian. Then by [12], we have $|\Omega_1(G)| = p^2$ and since both $\Omega_1(N)$ and $\Omega_1(H)$ are nontrivial and both contained in $\Omega_1(G)$, it follows that $|\Omega_1(N)| = |\Omega_1(H)| = p$. But p > 2. Hence *N* and *H* are cyclic by [5] and by [7], $N \cong \langle x \rangle$ and $H \cong \langle y \rangle$.*

II. SEPARABLE METACYCLIC 2-GROUPS; M = 1

In this section, split decompositions of metacyclic 2groups *G* of the form $G = \langle x, y | x^{2^n} = y^2 = 1, x^y = x^r \rangle$ are investigated. Kirtland [10] in his paper also investigated the split decompositions of metacyclic 2-group. The novelty in this paper is to show how to investigate the split decompositions of a finite metacyclic 2-group using GAP Software and to determine whether the decompositions are isomorphic. If *G* is abelian, then obviously, all its split decompositions are isomorphic by [11]. Otherwise, if n = 2, then *G* is the dihedral group D_8 and not all of its split decompositions are isomorphic [10]. The case $n \ge 3$ shall be considered in the next section where *G* is non-Abelian.

We shall now consider the following theorem as stated by Kirtland [10], and then implement it in GAP by generating a Dihedral group D_{16} of order 32 and its presentations.

THEOREM 2.1: Let G be any non-Abelian metacyclic 2group with presentation $G = \langle x, y | x^{2^n} = y^2 = 1, x^y = x^r \rangle$ with $n \ge 3$. Then the split decompositions of G are isomorphic if and only if $r = 2^{n \cdot 1}$ + 1.

PROOF: Assume that all split decompositions of *G* are isomorphic. Now consider the normal subgroup $N = \langle x^2, xy \rangle$ of *G*. Then since *N* is complemented in *G*, we have $G = [\langle x^2, xy \rangle] \langle y \rangle$, $\langle x^2, xy \rangle \cong \langle x \rangle$ and $\langle x^2, xy \rangle$ is Abelian. Thus $x^2 = (x^2)^{xy} = (x^y)^2 = (x^r)^2 = x^{2r}$ and $2r \equiv 2 \pmod{2^n}$. Hence, $r \equiv 1 \pmod{2^{n-1}}$ or $r = 2^{n-1} + 1$.

Conversely, suppose $r = 2^{n-1} + 1$ and that G = [N]H. Then obviously, $(x^2)^y = (x^y)^2 = (x')^2 = x^{2r} = x^2$ and $\langle x^2 \rangle = Z(G)$. Furthermore, $N \cap Z(G) \neq \{1\}$. This implies that $\langle x^{2^{n-1}} \rangle \in N$ and $x^{2^{n-1}} \notin H$. If in addition, $[x, y] = x^{-1}x^y = x^{-1+r} = x^{2^{n-1}}$, then $G' = \langle x^{2^{n-1}} \rangle$.

Next, let $\overline{G} = G/\langle x^{2^{n-1}} \rangle \cong Z_{2^{n-1}} \times Z_2$. Then consequently, $\overline{G} = N/\langle x^{2^{n-1}} \rangle \times H\langle x^{2^{n-1}} \rangle / \langle x^{2^{n-1}} \rangle = \overline{N} \times \overline{H}$ with $\overline{N} \neq \{1\}$ and $\overline{H} \cong H$. Hence, we have by [11], that $\overline{N} \cong Z_{2^{n-1}}$ and $\overline{H} \cong H \cong Z_2$ or $\overline{N} \cong Z_2$ and $\overline{H} \cong H \cong Z_{2^{n-1}}$.

Finally, consider the case $\overline{N} \cong Z_2$ and $\overline{H} \cong H \cong Z_{2^{n-1}}$. Then we have |N| = 4 and $|H/C_H(N)| \le |\operatorname{Aut}(N)|_2 = 2$. But if *H* is cyclic, then we have $C_H(N) \le H \cap Z(G) = \{1\}$ and $|H| \le 2$. Thus |G| = 8 and n = 2. But this contradicts the fact that $n \ge 3$. Consequently, $\overline{N} \cong Z_{2^{n-1}}$ and $H \cong \overline{H} \cong Z_2 \cong \langle b \rangle$. Hence, *N* is a maximal subgroup of *G*.

Now since $G/\langle x^2 \rangle = Z_2 \times Z_2$ and $\Phi(G) = \langle x^2 \rangle$, the only possible maximal subgroups of *G* are $\langle x \rangle$, $\langle x^2, y \rangle$, and $\langle x^2, xy \rangle$. But $(xy)^2 = xx^y = x^{r+1} = x^{2^{n-1}+2}$ and $|x^{2^{n-1}+2}| = 2^{n-1}$. Hence, $|xy| = 2^n$ and $\langle x^2, xy \rangle \cong \langle xy \rangle \cong \langle x \rangle$. Now consider the subgroup $\langle x^2, y \rangle$. Since $Z(G) = \langle x^2 \rangle$, $|\Omega_1(G)] = 4$ and $\Omega_1(G) = \langle x^{2^{n-1}}, y \rangle$, we have $\Omega_1(G) \leq \langle x^2, y \rangle$. Furthermore, $\Omega_1(H) \leq \Omega_1(G) \leq \langle x^2, y \rangle$. Therefore if $N = \langle x^2, y \rangle$, then $N \cap H \neq \{1\}$, a contradiction. Hence, $N \cong \langle x \rangle$, $H \cong \langle y \rangle$ and all split decompositions are isomorphic.*

REMARK 2.2: Consider the dihedral group D_{16} , of order 2^5 with the presentation

$$\overline{D}_{16} = \langle \alpha, \beta \mid \alpha^{2^n} = \beta^2 = 1, \alpha^{\beta} = \alpha^r \rangle.$$

We obtained the following results from GAP.

gap> G:= DihedralGroup(IsPermGroup, 32); Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)])gap> r:= (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);; gap > N := Subgroup(G, [r]);;gap > f := (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10);;gap> H:= Subgroup(G, [f]);; gap> Size(N); Size(H); 16 2 gap>IsCyclic(N); true gap>IsCyclic(H); true gap> IsNormal(G, N); true gap> IsNormal(G, H); false gap> D:= DirectProduct(N, H);; gap> Size(D); 32 gap> Center(G); Group([(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)])gap > s := (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16);;gap > Z := Subgroup(G, [s]);;gap> Size(Z); 2

gap> IsCyclic(Z);

true

gap> quit

Here, the subgroup N of order 16 consists of all the rotations in D_{16} as follows:

If we let $\alpha = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)$, then *N* is given by the following presentation

 $N = \{ \alpha^n : 1 \le n \le 16, \text{ where } \alpha^{16} = \alpha^0 = 1 \}.$

The cyclic subgroup N of index 2 in D_{16} is normal as shown above. It is also true by Lagrange's theorem since $[D_{16} : N] = |D_{16}|/|N| = 2$.

The subgroup H of order 2 is the cyclic subgroup of D_{16} generated by the reflection $\beta = (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)$ along the line of symmetry (1,9), where *H* is given by the presentation

$$H = \langle \beta \rangle = \{ \beta^n : 1 \le n \le 2 \} \text{ or}$$
$$H = \{ \beta^n \} = \begin{cases} 1 & iff \quad n \ is \ even \\ \beta & iff \quad n \ is \ odd \end{cases}.$$

Now,

 $D_{16} = N \bullet H = \langle \alpha, \beta \rangle = \{1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7, \alpha^8, \alpha^9, \alpha^{10}, \alpha^{11}, \alpha^{12}, \alpha^{13}, \alpha^{14}, \alpha^{15}, \beta, \alpha\beta, \alpha^{14}, \alpha^{15}, \beta, \alpha\beta, \alpha^{14}, \alpha^{15}, \beta, \alpha\beta, \alpha^{16}, \alpha^{1$

 $\alpha^{2}\beta, \ \alpha^{3}\beta, \ \alpha^{4}\beta, \ \alpha^{5}\beta, \ \alpha^{6}\beta, \ \alpha^{7}\beta, \ \alpha^{8}\beta, \ \alpha^{9}\beta, \\ \alpha^{10}\beta, \ \alpha^{11}\beta, \ \alpha^{12}\beta, \ \alpha^{13}\beta, \ \alpha^{14}\beta, \ \alpha^{15}\beta\}$

where • is the product of permutations. Thus, the subgroup N is complemented in D_{16} . Subsequently, D_{16} split over N and hence, D_{16} is separable.

The center $Z(D_{16})$ of D_{16} is the non-trivial subgroup $\{1, \alpha^8\}$ of D_{16} . It is clearly seen that $N \cap Z(D_{16}) \neq \{1\}$ and $H \cap Z(D_{16}) = \{1\}$. From our simple calculations, we observed that $r \neq 2^{n-1} + 1$. Hence, the split decompositions of D_{16} are not isomorphic.*

It is also clear that theorem 2.1 above gives a presentation for those non-Abelian separable metacyclic 2-groups with m =1 and $n \ge 3$, that have all split decompositions isomorphic. The following result follows directly from theorem 2.1 above. It presents other necessary and sufficient conditions for a metacyclic 2-group of the type mentioned above to have all its split decompositions isomorphic.

THEOREM 2.3: Supposed G is a finite non-Abelian separable metacyclic 2-group of the type $G = \langle x, y | x^{2^n} = y^2 = 1, x^y = x^r \rangle$ with $n \ge 3$. Then the following statements are equivalent.

(i) All split decompositions of the group G are of the form G = [N]H, where $N \triangleleft G$, N is cyclic of order 2^n and H is cyclic of order 2;

(ii) The order $|\Omega_1(G)| = 2^2$; (iii) $Z(G) = \Phi(G)$;

(iv) $\Omega_{n-1}(G) \neq G$;

(v) The group G is of class 2.

III. SEPARABLE METACYCLIC 2-GROUPS; $M \ge 2$

In this section, as shown by Kirtland [10] (see theorem 3.1) that if *G* is a separable metacyclic 2-group with presentation $G = \langle x, y | x^{2^n} = y^{2^m} = 1, x^y = x^r \rangle$, $m \ge 2$,

then G must have all its split decompositions isomorphic. We therefore implement the result using GAP Software by constructing some finite groups whose subgroups are cyclic.

THEOREM 3.1: If G is a separable metacyclic 2-group of type $G = \langle x, y | x^{2^n} = y^{2^m} = 1, x^y = x^r \rangle$ with $m \ge 2$, then all its split decompositions are isomorphic [10].

PROOF. If the group *G* is Abelian, then the result follows directly from [11]. Now, supposed *G* is not Abelian. Consequently, we shall have $r \ge 3$ and $n \ge 2$. We now consider three cases.

CASE 1: Let $a \in G$ where $a = x^{\alpha} y^{2^{m-1}}$ with α odd and $o(a) \neq 2$.

Now suppose $o(a) \neq 2$, then $a^2 = (x^{\alpha}y^{2^{m-1}})^2 = x^{\alpha+\alpha 2^{m-1}} = 1$. This implies that $\alpha + \alpha r^{2^{m-1}} = 0 \pmod{2^n}$ or $\alpha(1+r^{2^{m-1}}) = k2^n$ where k is a positive integer. The fact that α is odd and $\alpha|k2^n$ implies that $\alpha|k$. Thus $1+r^{2^{m-1}} = (k/\alpha)2^n$ or $r^{2^{m-1}} = (k/\alpha)2^n - 1$. Hence, $x^{y^{2^{m-1}}} = x^{r^{2^{m-1}}} = x^{(k/\alpha)2^n-1} = x^{-1}$. Moreover, since $m \ge 2$, we have $x^{y^{2^{m-2}}} = x^s$ where $1 \le s \le 2^n - 1$ and s is odd. This implies that $s^2 = -1 \pmod{2^n}$, a contradiction. Hence, $o(a) \ne 2$.

CASE 2: Let
$$\Omega_1(G) = \{1, x^{2^{n-1}}, y^{2^{m-1}}, x^{2^{n-1}}y^{2^{m-1}}\}.$$

Now if $a = x^{\alpha} y^{\beta}$ is a nontrivial element of G such that

 $o(a) \neq 2$ and $\alpha = 0$ or $\beta = 0$, then $a = y^{2^{m-1}}$ or $a = x^{2^{n-1}}$ respectively. If $\alpha \neq 0$ and $\beta \neq 0$, then $\beta = 2^{m-1}$ and $a = x^{\alpha} y^{2^{m-1}}$.

Suppose n = 2. Then by case 1, $\alpha = 2 = 2^{n-1}$. But if $n \ge 3$ and since $\langle y \rangle$ acts on $\langle x \rangle$, there is a homomorphism $\varphi:\langle y \rangle \rightarrow \operatorname{Aut}(\langle x \rangle)$. Suppose that $\operatorname{Ker}(\varphi) \ne \{1\}$. Then $y^{2^{m-1}} \in \operatorname{ker}(\varphi)$ and x and $y^{2^{m-1}}$ commute. As a result, $1 = (x^{\alpha} y^{2^{m-1}})^2 = x^{2\alpha} y^{2^m} = x^{2\alpha}$. This implies that $\alpha = 2^{n-1}$ and $a = x^{2^{n-1}} y^{2^{m-1}}$.

Next, supposed Ker(φ) = {1}. Denote Aut($\langle x \rangle$) by { $\varphi_1, \varphi_3, ..., \varphi_{2^n-1}$ }, where $\varphi_i : x \to x^i$, for $i = 1,3,...,2^n - 1$. By [13], we get Aut($\langle x \rangle$) $\cong L + K$, where L is cyclic of order 2^{n-2} and generated by φ_5 , and K is cyclic of order 2 generated by φ_{2^n-1} . Then the only nontrivial elements of Aut($\langle x \rangle$) of order 2 are $\varphi_{2^{n-1}+1}, \varphi_{2^n-1}$, and $\varphi_{2^{n-1}-1}$ and since $|y^{2^{m-1}}| = 2$, it follows that $\varphi(y^{2^{m-1}}) = \varphi_{2^{n-1}+1}, \varphi_{2^n-1}$, or $\varphi_{2^{n-1}-1}$. Again if $m \ge 2$, then $\varphi(y^{2^{m-2}}) = \varphi_j$ where $\varphi(y^{2^{m-1}}) = (\varphi(y^{2^{m-2}})^2 = (\varphi_j)^2$. Thus $j^2 = 2^{n-1} + 1$ (mod 2^n), $2^n - 1$ (mod 2^n), or $2^{n-1} - 1$ (mod 2^n). But since $j^2 \ne -1$ (mod 2^t) for any integer t > 0, we have $j^2 = 2^{n-1} \pmod{2^n}$ and $x^{y^{2^{m-1}}} = x^{2^{n-1}+1}$.

Finally, given that $a^2 = 1$, then $(x^{\alpha} y^{2^{m-1}})^2 = x^{\alpha+\alpha(2^{n-1}+1)} = x^{\alpha(2^{n-1}+2)} = 1$ and since $|x^{2^{m-1}+2}| = 2^{n-1}$, it follows that $\alpha = 2^{n-1}$. Hence, $x^{\alpha} y^{\beta} = x^{2^{n-1}} y^{2^{m-1}}$ and $\Omega_1(G) = \{1, x^{2^{n-1}}, y^{2^{m-1}}, x^{2^{n-1}} y^{2^{m-1}}\}$. *CASE 3:* All split decompositions of G are isomorphic. Supposed that G is given by the presentation $G(n.m.r) = \langle x, y | x^{2^n} = y^{2^m} = 1, x^y = x^r \rangle$,

and that G = [N]H. Then $G(n.m.r)/\langle x^{2^{n-1}}\rangle \cong G(n-1,m,r)$ and if $n \ge 2$, then the result is true by induction on n.

Again, since $[x, y] = x^{-1}x^y = xr^{-1}$, it implies that $G' = \langle xr^{-1} \rangle$ $\leq \langle x^2 \rangle$. Now let $z = x^{2^{n-1}} \in \Omega_1(G') \cap Z(G)$. If $z \notin N$, then $[G, N] \leq G' \cap N = \langle x^{r-1} \rangle \cap N = \{1\}$. Thus $N \leq Z(G)$ and so, $G = N \times H$. But this yields $|\Omega_1(G)| = 4$. Thus, we have $|\Omega_1(N)| = |\Omega_1(H)| = 2$. Consequently, N and H each have only one subgroup of order 2. But by [12], N and H are either cyclic or a generalized quaternion group. In either case, both N and H are inseparable and thus by [11], $N \cong \langle x \rangle$ and $H \cong \langle y \rangle$, or $N \cong \langle y \rangle$ and $H \cong \langle x \rangle$. In either case, H is cyclic, implying that G

is abelian, a contradiction. Hence, $\langle z \rangle \leq N$ and $[\langle x \rangle / \langle z \rangle] \langle y \rangle \cong G(n - 1, m, r) \cong G / \langle z \rangle \cong [N / \langle z \rangle] H / \langle z \rangle / \langle z \rangle$. As a result, $N / \langle z \rangle \cong \langle x \rangle / \langle z \rangle$ and $H \cong \langle y \rangle$ or $N / \langle z \rangle \cong \langle y \rangle$ and $H \cong \langle x \rangle / \langle z \rangle$. In either case, H is cyclic and N is abelian. Also if $N / \langle z \rangle \cong \langle x \rangle / \langle z \rangle$, then N has order 2^n and is of exponent at least 2^{n-1} . Thus N is isomorphic to Z_{2^n} or $Z_{2^{n-1}} \times Z_2$. Finally, if $N \cong Z_{2^{n-1}} \times Z_2$, then we have $|\Omega_1(N)| = 4$ and $|\Omega_1(G)| \geq 8$. This is a contradiction. Thus, N is cyclic and if $N / \langle z \rangle \cong \langle y \rangle$, then a similar argument yields that N must also be cyclic. Hence, both N and H are cyclic and by [1], $N \cong \langle x \rangle$ and $H = \langle y \rangle$.*

A. IMPLEMENTATION OF THEOREM 3.1

Given a structured object X of any sort, symmetry is a mapping of the object onto itself which preserves structure. But if X is a finite set with no additional structure, then symmetry is defined as a bijective mapping from the set to itself, giving rise to what is called permutation group S_n . In this section we generate the non-Abelian group S_{16} in GAP and then find some of its subgroups with one, two and three generators as follows.

 $\begin{array}{l} gap>S:= SymmetricGroup(16);\\ Sym([1..16])\\ gap>C:= CyclicGroup(IsPermGroup, 16);\\ Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)])\\ gap>r:= (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);;\\ gap>s:= (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10);;\\ gap>K:= Subgroup(S, [r,s]);\\ Group([((1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)])\\ gap>Size(S);\\ 20922789888000\\ gap>Factors(20922789888000);\\ \end{array}$

```
7.11.131
    gap> D:= DirectProduct(C, K);
     <permutation group with 3 generators>
    gap> Size(C); Size(K); Size(D);
     16
    32
    512
    gap> IsNormal(D, C):
    true
    gap> IsNormal(D, K);
    true
     gap>IsCyclic(K);
    false
    gap> Size(C)*Size(K) = Size(D);
    true
     gap>a:=(1,3)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11);;
    gap> R:= Subgroup(S, [r]);
    Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)])
     gap > Size(R);
     16
     gap> L:= Subgroup(S, [r,a]);
                            (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
     Group([
(1,3)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11) ])
    gap> Size(L);
    32
    gap> IsNormal(D, L);
    true
    gap>Size(R)*Size(L) = Size(D);
```

true
gap>IsAbelian(S);

false gap> IsAbelian(D);

false

From the above results, the non-Abelian group $D \subseteq S_{16}$ is the semidirect product of the subgroups *C* and *K* of S_{16} i.e. $D = C \times K$. But $D = R \times L$ with $C \cong R$, $K \cong L$. Also, $L \triangleleft D$ and $K \triangleleft D$. Thus, both *L* and *K* splits over *D* and we write D = [K]C = [L]R. Hence, the two split decompositions [K]Cand [L]R are isomorphic.

Next, we generate a cyclic group G as a subgroup of S_{16} as follows.

```
gap> G:= CyclicGroup(IsPermGroup, 16);
     Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)])
     gap> Elements(G);
                             (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
                0.
(1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16),
      (1,4,7,10,13,16,3,6,9,12,15,2,5,8,11,14),
(1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16),
      (1,6,11,16,5,10,15,4,9,14,3,8,13,2,7,12),
(1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12),
      (1,8,15,6,13,4,11,2,9,16,7,14,5,12,3,10),
(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16),
      (1,10,3,12,5,14,7,16,9,2,11,4,13,6,15,8),
(1,11,5,15,9,3,13,7)(2,12,6,16,10,4,14,8),
      (1,12,7,2,13,8,3,14,9,4,15,10,5,16,11,6),
(1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8),
      (1,14,11,8,5,2,15,12,9,6,3,16,13,10,7,4),
(1,15,13,11,9,7,5,3)(2,16,14,12,10,8,6,4),
      (1,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2)]
     gap>a:=G.1;
     (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)
     gap> Size(G);
     16
     gap>f:=x \to x^{6};
```

function(x) ... end gap > N := Subgroup(G, [f(a)]);Group([(1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12)]) gap> Elements(N); (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16), 0. (1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16), (1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12),(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16),(1.11.5.15.9.3.13.7)(2.12.6.16.10.4.14.8).(1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8),(1,15,13,11,9,7,5,3)(2,16,14,12,10,8,6,4)] gap> Size(N); gap> IsNormal(G, N); true gap> f:= $x \to x^5$; function(x) ... end gap> K:= Subgroup(G, [f(a)]); Group([(1,6,11,16,5,10,15,4,9,14,3,8,13,2,7,12)]) gap> Size(K); 16 gap > b := (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16);;gap> M:= Subgroup(G, [b]); Group([(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]) gap> Elements(M); [(), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)] gap> Size(M); gap> Size(G) = Size(M)*Size(N); true

The subgroup *N* of *G* generated by the function $f(x) = x^6$ for an element $x \in G$ is a normal subgroup while the function $f(x) = x^5$ generated the group $K \cong G$. Hence, *N* is complemented in *G*.

IV. CONCLUSION

In this paper, we have successfully shown that if G is a finite separable metacyclic 2-group with presentation $G = \langle x, y | x^{2^n} = y^{2^m} = 1, x^y = x^r \rangle, m \ge 1, n \ge 3$, then all split decompositions of G are either isomorphic

(if G is Abelian), or G is the Dihedral group of order 2n. We therefore conclude that every finite group with the given presentation can be expressed as a semidirect product of a cyclic group with another cyclic group.

REFERENCES

- [1] King B. W., Presentations of Metacyclic Groups, Bull. Austral. Math. Soc., 8(1973), 103-131.
- [2] Shuaibu G. N., Modu B. A., Samaila D., On the Symmetric Genus of k-Metacycilc Group and its Presentations, Asian Research Journal of Mathematics 6(2) (2017), 1-15, ISSN: 2456-477X.
- [3] Brandle R., Verardi L., Metacyclic p-Groups and their Conjugacy Classes of Subgroups, Glasgow Math. J., 35(1993), 339-344.
- [4] Liedahl S., Enumeration of Metacyclic p-Groups, J. Algebra, 186(1996), 436-446.
- [5] Beuerle J. R., Metacyelic Groups and their Nonabelian Tensor Squares, Ph.D. Thesis, SUNY Binghamton, Binghamton, 1999.
- [6] Hempel C. E., Metacyclic Groups, Comm. Algebra, 28(2000), 3865-3897.
- [7] Sire H. S., Metacyclic Groups of Odd Order, Proe. London Math. Soe. (3), 69(1994), 47-71.
- [8] Sim H. S., Conjugacy Classes of Subgroups of Split Metacyclic Groups of Prime Power Order, Bull. Korean. Math. Soc., 35(1998), 719-726.
- [9] Jackson J. II, Splitting in Finite Metacyclic Groups, Ph.D. Thesis, University of Arizona, Tucson: 2000.
- [10] Kirtland J., Finite Separable Metacyclic 2-Group, Expo. Math. 22(2004), 395-398.
- [11] Kirtland J., Direct Products of Inseparable Finite Groups, Arch. Math., 62(1994), 289-291.
- [12] Huppert B., Endliehe Gruppen I, Springer-Verlag, Berlin, 1983.
- [13] Scott W. R., Group Theory, Dover, New York, 1987.