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Abstract: Given a finite separable metacyclic 2-group G, it is always possible to express G as a semidirect product of a
cyclic group with another cyclic group. In this paper, we implement the use of Group Application Package (GAP)
Software to determine the split decompositions of a finite separable metacyclic 2-group up to isomorphism, where the
dihedral group Dy of order 2° and its presentations was derived and shown to be separable. The finite groups were
generated and expressed as the semidirect product of cyclic subgroups.
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I. INTRODUCTION

A subgroup N of a group G is complemented in G if there
exists another subgroup H of G such that G = NH and
whenever X € N and x € H, then x = 1, the identity element of
G. i.e. NmH = {1}. If in addition, N <G, then G is said to
split over N and is written as G = [N]H. In this case, we say
that G is the semidirect product of its subgroups N and H. If
further, G = [NJH = [Ny]JH;, with N =N, and H = H,,
then the two split decompositions [N]H and [N;]H; are said to
be isomorphic. A group is said to be separable if it splits over
a nontrivial proper normal subgroup and inseparable
otherwise.

Any metacyclic p-group can be presented by the relation

G=(xy|x" =Ly” =x',x) =x")[1]. 1 G s
separable, then by the same result, we can make t to be 0 so
that G =(X,y | X" =y =1,x¥ = X").In this case, G =
[()Xy) and in our result, we have shown that the separable
metacyclic p-groups with p odd have split decompositions
isomorphic to G. However, this is not the case for all
metacyclic 2-groups, particularly for Dihedral groups D, of
order 2n. For instance, consider the dihedral group D, = {a, S|
d'= =1, & = d of order 8. While D, = [(&)]($), it has a
non-isomorphic decomposition, where D, = [(&?, B ap),

with (&2 isomorphic to the Klein 4-group. For general
presentation and more information, see [2].

This paper is a review of the work of Kirtland, [10]. Our
aim is to study the finite separable metacyclic 2-group, the
necessary and sufficient conditions under which a separable
metacyclic 2-group has all its split decompositions isomorphic
as discussed by Kirtland and then implement the use of GAP
to determine its splits decompositions. The concept of
metacyclic 2-groups and metacyclic p-groups in general, have
been extensively studied by many authors. For more
information and results, see the work of Brandle and Verardi
[3], Lie dhal [4], King [1], Beuerle [5], Hempel [6], and Sire
[7]. In particular, separable metacyclic groups have been
studied by Sim [8] and Jackson [9]. However, the simple
condition for which a separable metacyclic 2-group has all its
split decompositions isomorphic has not been directly
addressed by these authors.

We used standard notations and for a p-group G, the

subgroup Q. of G is given by

Q.(G)=(g]geG,g 4 =1). The center of a group G is

denoted by Z(G) and ®(G) will denote its Frattini subgroup.

Our research is limited to finite groups.

We shall see from the following theorem that if G is a
metacyclic p-group for p an odd prime, then all its split
decompositions are isomorphic.
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THEOREM 1.1: Given a separable metacyclic p-group G
for p an odd prime, then all its split decompositions are
isomorphic [10].

PROOF. By [1], we
G=(xy|x" =y” =1x’ =x") and s0, G = [(]y).
Let G = [N]H be another split decomposition for G. If G is
Abelian, then G = (x) x {y) = N x H and without any loss of
generality, we get by [10], that N = (X) and H = (y).

Assume G is not Abelian. Then by [12], we have |Q,(G)|
= p? and since both ©;(N) and Q;(H) are nontrivial and both
contained in ©Q,(G), it follows that |Q,(N)| = |Q(H)| = p. But p
> 2. Hence N and H are cyclic by [5] and by [7], N =(X)

and H = (y) .*

have

Il. SEPARABLE METACYCLIC 2-GROUPS; M =1

In this section, split decompositions of metacyclic 2-

groups G of the form G = (X, y | x* =y2 =1 x’ =x") are
investigated. Kirtland [10] in his paper also investigated the
split decompositions of metacyclic 2-group. The novelty in
this paper is to show how to investigate the split
decompositions of a finite metacyclic 2-group using GAP
Software and to determine whether the decompositions are
isomorphic. If G is abelian, then obviously, all its split
decompositions are isomorphic by [11]. Otherwise, if n = 2,
then G is the dihedral group Dg and not all of its split
decompositions are isomorphic [10]. The case n > 3 shall be
considered in the next section where G is non-Abelian.

We shall now consider the following theorem as stated by
Kirtland [10], and then implement it in GAP by generating a
Dihedral group Dy of order 32 and its presentations.

THEOREM 2.1: Let G be any non-Abelian metacyclic 2-
group with presentation

G=(x,y|x* =y?2=1x" =x") with n > 3. Then the
split decompositions of G are isomorphic if and only if r = 2"*
+1.

PROOF: Assume that all split decompositions of G are
isomorphic. Now consider the normal subgroup N = (x*, xy) of
G. Then since N is complemented in G, we have G = [(x%,
I, (X2, xy) = (X) and (X, xy) is Abelian. Thus x? =
0AY = ()2 = (x)? = x* and 2r = 2 (mod 2"). Hence, r = 1
(mod 2" orr=2"1+1.

Conversely, suppose r = 2"* + 1 and that G = [N]H. Then
obviously, (X3 = (x)* = (X')* = x¥* = x* and (x® = Z(G).
Furthermore, NNZ(G) # {1}. This implies that (in&) eN
and x2 ¢ H . If in addition, [x,y]=x"x’ =x" =x?",
then G’ = (x> ).

Next, let é:G/<x2"1> =Z,.xZ, Then consequently,

G =N/ DYxHXT YT Y=NxH with N ={l}

and H = H . Hence, we have by [11], that N = Z,. and
HzH=Z,or N=Z,and H=H=Z ..

Finally, N=Z, and
H=H=Z,, Then we have IN| = 4 and [H/Cy(N)I <

[Aut(N)|, = 2. But if H is cyclic, then we have Cy(N) < H n
Z(G) = {1} and |H| < 2. Thus |G] = 8 and n = 2. But this

contradicts the fact that n > 3. Consequently, N = Zzn,1

consider the case

andH = H = Z, =(b). Hence, N is a maximal subgroup
of G.

Now since G/(x?) = Z, x Z, and ®(G) = (x?), the only
possible maximal subgroups of G are (x), (x*, y), and (X%, xy).
But (xy)2 —xx) = x™ = X2H+2 and | X2"*1+2 = on-1
Hence, [xy] = 2" and (X*, Xy) = (Xy) = (X). Now consider
the subgroup (x%, y). Since Z(G) = (x%, |Q(G)] = 4 and
Q,G)=(xT"y), we hae Q(G)<(2Y).
Furthermore, Q, (H) < Q,(G) <(X?,y). Therefore if N =
(X%, y), then N " H = {1}, a contradiction. Hence, N =(X),
H = (y) and all split decompositions are isomorphic.*

REMARK 2.2: Consider the dihedral group D¢, of order
2° with the presentation

D, =(a,Bla® =p*=1a’ =a").

We obtained the following results from GAP.

gap> G:= DihedralGroup(IsPermGroup, 32);

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10) ])

gap> r:= (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16):;

gap> N:= Subgroup(G, [r]);;

gap> f:= (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10);;

gap> H:= Subgroup(G, [f]);;

gap> Size(N); Size(H);

16

2

gap> IsCyclic(N);
true

gap> IsCyclic(H);
true

gap> IsNormal(G, N);
true

gap> IsNormal(G, H);
false

gap> D:= DirectProduct(N, H);;
gap> Size(D);

32

gap> Center(G);

Group([ (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16) 1)
gap> s:= (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16);;
gap> Z:= Subgroup(G, [s]);;

gap> Size(2);

2

gap> IsNormal(G, 2);

true
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gap> IsCyclic(2);

true

gap> quit

Here, the subgroup N of order 16 consists of all the
rotations in D¢ as follows:

If we let a = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
then N is given by the following presentation

N={d":1<n<16, where a’®=0o’=1}.

The cyclic subgroup N of index 2 in Dy is normal as

shown above. It is also true by Lagrange’s theorem since [Dyg

:N] = |Dael/|N| =
The subgroup H of order 2 is the cyclic subgroup of D16
generated by the reflection B

(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10) along the line of
symmetry (1,9), where H is given by the presentation

H=(B)={B":1<n<2} or

1 iff n is even
H={8"Y=1, o« 0

g iff n is odd
Now,

Dis=NeH=(a, p)={1, ¢, R AR A R A

o, o, %, o, o A, B ap,
dp, B, d'B B B, odB B P
d°B, o'p, B, &, B, o° B}

where e is the product of permutations. Thus, the
subgroup N is complemented in Dy Subsequently, Dig split
over N and hence, Dy is separable.

The center Z(D4g) of D¢ is the non-trivial subgroup {1,
o’} of Dy It is clearly seen that NnZ(Dy) # {1} and
HNZ(D46) = {1}. From our simple calculations, we observed
that r = 2"~ + 1. Hence, the split decompositions of D4 are
not isomorphic.*

It is also clear that theorem 2.1 above gives a presentation
for those non-Abelian separable metacyclic 2-groups with m =
1 and n > 3, that have all split decompositions isomorphic. The
following result follows directly from theorem 2.1 above. It
presents other necessary and sufficient conditions for a
metacyclic 2-group of the type mentioned above to have all its
split decompositions isomorphic.

THEOREM 2.3: Supposed G is a finite non-Abelian
separable metacyclic 2-group of the type

G=(x,y|x¥ =y?2=1x" =x") with n > 3. Then the
following statements are equivalent.

(i) All split decompositions of the group G are of the form
G = [N]JH, where N <G, N is cyclic of order 2" and H is
cyclic of order 2;

(ii) The order |[Q4(G)I =

(i) Z(G) = ®(G);

(iv) 20.4(G) = G;

(V) The group G is of class 2.

I1l. SEPARABLE METACYCLIC 2-GROUPS; M > 2
In this section, as shown by Kirtland [10] (see theorem
3.1) that if G is a separable metacyclic 2-group with

presentationG = (X, y | X* =y? =1x’ =x"), m > 2,

then G must have all its split decompositions isomorphic. We

therefore implement the result using GAP Software by

constructing some finite groups whose subgroups are cyclic.
THEOREM 3.1: If G is a separable metacyclic 2-group of

type G =(X, y| x> =y¥ =1x’ =x") withm=> 2, then
all its split decompositions are isomorphic [10].

PROOF. If the group G is Abelian, then the result follows
directly from [11]. Now, supposed G is not Abelian.
Consequently, we shall have r > 3 and n > 2. We now consider
three cases.

CASE 1: Let a € G where a = X" yszl
o(a)#2.

Now suppose o(a) =2, then a? = (x~

with « odd and

M2 grar?
y© ) =x =1

This implies that a+ar? =0 (mod 2" or

a(l+12" ) =k2" where k is a positive integer. The fact
that « is odd and ok2" implies that ok. Thus
m-1 m-1
1+r2 =(k/a)2" or r* =(k/a)2" —1. Hence,
mel 2m—l n
X =x" =x®9%7 — % Moreover, since m > 2,
2m72
we have XY = X° where 1 <s<2"-1and s is odd. This
implies that s> = -1 (mod 2"), a contradiction. Hence,
o(a)#2.

1 X2nfl yszl}.

is a nontrivial element of G such that

CASE 2: Let Q, (G) ={L, x*,y?"
Now if a = Xx“y”

Zm—l 2n—1

o(@#2and a=0o0r f=0,then a=Yy° ora=X

respectively. If « = 0 and B = 0, then ,B=2m"l and

ay, 2"t

a=x"y

Suppose n = 2. Then by case 1, =2 =2"". Butifn>3
and since (y) acts on (x), there is a homomorphism
o:(Y)—>Aut((x)). Suppose that Ker(p) = {1}. Then

om-1 mel
y° eker(p) and x and Yy commute. As a result,

1= (Xayzm*1)2 _ Xzayzm — %2
2m—1

“. This implies that o = 2"*
and a = infly

Next, supposed Ker(p) =
{0,050 0,0 ),
i=13,...,2" —1. By [13], we get Aut((x)) = L + K, where L

is cyclic of order 2" and generated by @5, and K is cyclic of

{1}. Denote Aut({(x)) by

where @ X—> X', for

order 2 generated by Py Then the only nontrivial elements

of Aut({x)) of order 2 are Pont g1 Pon 1 and Pors 4 and

since | yszl |= 2, it follows that ¢(y2m71

):¢2n71+11¢2n711
or @i, if m > 2, then ¢(y2m72)=(pj

where p(y*" ) = (p(y*")? = (p;)?. Thus 2 = 2 + 1
(mod 2"), 2" - 1 (mod 2"), or 2™* - 1 (mod 2"). But since j* # -1

Again
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(mod 2" for any integer t >0, we have j* = 2""* (mod 2") and

om-1

xV _ X2H+1.

Finally, =~ given  that a> = 1,  then
(X“yszl)z _ Xa+a(2"’1+1) _ Xa(z"*uz) =1 and  since
X272 |=2" it follows that «=2"". Hence,

x7y? =x7y? " and Q (G) ={Lx* ,y¥ x¥ y Y}
CASE 3: All split decompositions of G are isomorphic.
Supposed that G is given by the

presentation G(n.m.r) = (x,y| x* =y* =1,x’ =x"),
and that G = [N]H. Then

G(n.m.r)/<x2n4> =~G(n—1,m,r) and if n > 2, then the
result is true by induction on n.
Again, since [x, y] = x™' = xr’, it implies that G' = (xr™%)

< (). Now letz =X2" eQ,(G)NZ(G). If zgN,

then [G,N]<G' AN=X"DAN={1}. Thus N <
Z(G) and so, G = N x H. But this yields |Q;(G)| = 4. Thus, we
have |Q;(N)| = |Q2;(H)| = 2. Consequently, N and H each have
only one subgroup of order 2. But by [12], N and H are either
cyclic or a generalized quaternion group. In either case, both N
and H are inseparable and thus by [11], N = (x) and H = (y), or
N = ({y) and H = (x). In either case, H is cyclic, implying that G
is abelian, a contradiction.

Hence, (z) < N and [(X)2)Ky) = G(n - 1, m, r) = G/z) =
[NK2)IH(2)/(z). As a result, N/(z) = (x)/(z) and H = {y) or NKz)
= (yy and H = (x)/(z). In either case, H is cyclic and N is
abelian. Also if N/(z) = (x)/(z), then N has order 2" and is of

exponent at least 2"*. Thus N is isomorphic to Z, or
Zzn—l

|Q:(N)| = 4 and |Q;(G)| > 8. This is a contradiction. Thus, N is
cyclic and if N/(z) = (y), then a similar argument yields that N
must also be cyclic. Hence, both N and H are cyclic and by
[1], N=(x) and H = (y).*

xZ,. Finally, if N EZzn,leZ, then we have

A. IMPLEMENTATION OF THEOREM 3.1

Given a structured object X of any sort, symmetry is a
mapping of the object onto itself which preserves structure. But
if X is a finite set with no additional structure, then symmetry is
defined as a bijective mapping from the set to itself, giving rise
to what is called permutation group S,. In this section we
generate the non-Abelian group S;s in GAP and then find some
of its subgroups with one, two and three generators as follows.

gap> S:= SymmetricGroup(16);

Sym([1..16])

gap> C:= CyclicGroup(lsPermGroup, 16);

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) ])

gap>r:=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);;

gap>s:=(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10);;

gap> K:= Subgroup(s, [r,s]);

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10) 1)

gap> Size(S);

20922789888000

gap> Factors(20922789888000);

[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,5,5,5, 7,
7,11,13]

gap> D:= DirectProduct(C, K);

<permutation group with 3 generators>

gap> Size(C); Size(K); Size(D);

16

32

512

gap> IsNormal(D, C);

true

gap> IsNormal(D, K);

true

gap> IsCyclic(K);

false

gap> Size(C)*Size(K) = Size(D);

true

gap> a:= (1,3)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11);;

gap> R:= Subgroup(s, [r]);

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) ])

gap> Size(R);

16

gap> L:= Subgroup(S, [r,a]);

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
(1,3)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11) 1)

gap> Size(L);

32

gap> IsNormal(D, L);

true

gap> Size(R)*Size(L) = Size(D);

true

gap> IsAbelian(S);

false

gap> IsAbelian(D);

false

From the above results, the non-Abelian group DcSyg is
the semidirect product of the subgroups C and K of Sigi.e. D =

CxK ButD=RxLwithC=R, K=L.Also, L<D

and K < D. Thus, both L and K splits over D and we write
D = [K]C = [L]R. Hence, the two split decompositions [K]C
and [L]R are isomorphic.
Next, we generate a cyclic group G as a subgroup of Sy
as follows.
gap> G:= CyclicGroup(IsPermGroup, 16);
Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) )
gap> Elements(G);
0, (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),
(1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16),
(1,4,7,10,13,16,3,6,9,12,15,2,5,8,11,14),
(1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16),
(1,6,11,16,5,10,15,4,9,14,3,8,13,2,7,12),
(1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12),
(1,8,15,6,13,4,11,2,9,16,7,14,5,12,3,10),
(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16),
(1,10,3,12,5,14,7,16,9,2,11,4,13,6,15,8),
(1,11,5,15,9,3,13,7)(2,12,6,16,10,4,14,8),
(1,12,7,2,13,8,3,14,9,4,15,10,5,16,11,6),
(1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8),
(1,14,11,8,5,2,15,12,9,6,3,16,13,10,7,4),
(1,15,13,11,9,7,5,3)(2,16,14,12,10,8,6,4),
(1,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2) ]
gap>a:=G.1;
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)
gap> Size(G);
16
gap> f:= x -> x"6;
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function( x) ... end
gap> N:= Subgroup(G, [f(a)]);
Group([ (1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12) 1)
gap> Elements(N);
, (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16),
(1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16),
(1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12),
(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16),
(1,11,5,15,9,3,13,7)(2,12,6,16,10,4,14,8),
(1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8),
(1,15,13,11,9,7,5,3)(2,16,14,12,10,8,6,4) ]
gap> Size(N);
8

gap> IsNormal(G, N);

true

gap> f:= x -> x/5;

function( x) ... end

gap> K:= Subgroup(G, [f(@)]);

Group([ (1,6,11,16,5,10,15,4,9,14,3,8,13,2,7,12) ])

gap> Size(K);

16

gap> b:=(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16);;
gap> M:= Subgroup(G, [b]);

Group([ (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16) 1)
gap> Elements(M);

[0, (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16) ]
gap> Size(M);

2

gap> Size(G) = Size(M)*Size(N);

true

The subgroup N of G generated by the function f(x) = x°
for an element xeG is a normal subgroup while the function
f(x) = x> generated the group K=G. Hence, N is complemented
in G.

IVV. CONCLUSION
In this paper, we have successfully shown that if G is a
finite separable metacyclic 2-group with

presentation G = (X, y | x> =y¥ =1x’ =x"), m>1,n
> 3, then all split decompositions of G are either isomorphic

(if G is Abelian), or G is the Dihedral group of order 2n. We
therefore conclude that every finite group with the given
presentation can be expressed as a semidirect product of a
cyclic group with another cyclic group.
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