
 

 

 

Page 235 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 5 Issue 6, June 2018 

 

ISSN: 2394-4404 

The Split Decompositions Of Finite Separable Metacyclic 2-Group 
 

 

 

 

 

 

  

D. Samaila 

M. Pius Pur 

Department of Mathematics, Adamawa State University, Mubi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION 

 

A subgroup N of a group G is complemented in G if there 

exists another subgroup H of G such that G = NH and 

whenever x  N and x  H, then x = 1, the identity element of 

G. i.e. NH = {1}. If in addition, GN  , then G is said to 

split over N and is written as G = [N]H. In this case, we say 

that G is the semidirect product of its subgroups N and H. If 

further, G = [N]H = [N1]H1, with 1NN   and 1HH  , 

then the two split decompositions [N]H and [N1]H1 are said to 

be isomorphic. A group is said to be separable if it splits over 

a nontrivial proper normal subgroup and inseparable 

otherwise. 

Any metacyclic p-group can be presented by the relation 

 rytpp xxxyxyxG
mn

,,1|, [1]. If G is 

separable, then by the same result, we can make t to be 0 so 

that .,1|,  rypp xxyxyxG
mn

In this case, G = 

[x]y and in our result, we have shown that the separable 

metacyclic p-groups with p odd have split decompositions 

isomorphic to G. However, this is not the case for all 

metacyclic 2-groups, particularly for Dihedral groups Dn of 

order 2n. For instance, consider the dihedral group D4 = ,  | 

4
 = 2

 = 1, 
 = 3

 of order 8. While D4 = [], it has a 

non-isomorphic decomposition, where D4 = [2
, ], 

with 2
, isomorphic to the Klein 4-group. For general 

presentation and more information, see [2]. 

This paper is a review of the work of Kirtland, [10]. Our 

aim is to study the finite separable metacyclic 2-group, the 

necessary and sufficient conditions under which a separable 

metacyclic 2-group has all its split decompositions isomorphic 

as discussed by Kirtland and then implement the use of GAP 

to determine its splits decompositions. The concept of 

metacyclic 2-groups and metacyclic p-groups in general, have 

been extensively studied by many authors. For more 

information and results, see the work of Brandle and Verardi 

[3], Lie dhal [4], King [1], Beuerle [5], Hempel [6], and Sire 

[7]. In particular, separable metacyclic groups have been 

studied by Sim [8] and Jackson [9]. However, the simple 

condition for which a separable metacyclic 2-group has all its 

split decompositions isomorphic has not been directly 

addressed by these authors. 

We used standard notations and for a p-group G, the 

subgroup i  of G is given by 

 1,|)(
ip

i gGggG . The center of a group G is 

denoted by Z(G) and )(G  will denote its Frattini subgroup. 

Our research is limited to finite groups. 

We shall see from the following theorem that if G is a 

metacyclic p-group for p an odd prime, then all its split 

decompositions are isomorphic. 

Abstract: Given a finite separable metacyclic 2-group G, it is always possible to express G as a semidirect product of a 

cyclic group with another cyclic group. In this paper, we implement the use of Group Application Package (GAP) 

Software to determine the split decompositions of a finite separable metacyclic 2-group up to isomorphism, where the 

dihedral group D16 of order 2
5
 and its presentations was derived and shown to be separable. The finite groups were 

generated and expressed as the semidirect product of cyclic subgroups. 
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THEOREM 1.1: Given a separable metacyclic p-group G 

for p an odd prime, then all its split decompositions are 

isomorphic [10]. 

PROOF. By [1], we have 

 rypp xxyxyxG
mn

,1|,  and so, G = [x]y. 

Let G = [N]H be another split decomposition for G. If G is 

Abelian, then G = x  y = N  H and without any loss of 

generality, we get by [10], that  xN  and  yH . 

Assume G is not Abelian. Then by [12], we have |1(G)| 

= p
2
 and since both 1(N) and 1(H) are nontrivial and both 

contained in 1(G), it follows that |1(N)| = |1(H)| = p. But p 

> 2. Hence N and H are cyclic by [5] and by [7],  xN  

and  yH .* 

 

 

II. SEPARABLE METACYCLIC 2-GROUPS; M = 1 

 

In this section, split decompositions of metacyclic 2-

groups G of the form  ry xxyxyxG
n

,1|, 22
 are 

investigated. Kirtland [10] in his paper also investigated the 

split decompositions of metacyclic 2-group. The novelty in 

this paper is to show how to investigate the split 

decompositions of a finite metacyclic 2-group using GAP 

Software and to determine whether the decompositions are 

isomorphic. If G is abelian, then obviously, all its split 

decompositions are isomorphic by [11]. Otherwise, if n = 2, 

then G is the dihedral group D8 and not all of its split 

decompositions are isomorphic [10]. The case n  3 shall be 

considered in the next section where G is non-Abelian. 

We shall now consider the following theorem as stated by 

Kirtland [10], and then implement it in GAP by generating a 

Dihedral group D16 of order 32 and its presentations. 

THEOREM 2.1: Let G be any non-Abelian metacyclic 2-

group with presentation 

 ry xxyxyxG
n

,1|, 22
 with n  3. Then the 

split decompositions of G are isomorphic if and only if r = 2
n-1

 

+ 1. 

PROOF: Assume that all split decompositions of G are 

isomorphic. Now consider the normal subgroup N = x
2
, xy of 

G. Then since N is complemented in G, we have G = [x
2
, 

xy]y,  xxyx ,2
 and x

2
, xy is Abelian. Thus x

2
 = 

(x
2
)

xy
 = (x

y
)

2
 = (x

r
)

2
 = x

2r
 and 2r  2 (mod 2

n
). Hence, r  1 

(mod 2
n-1

) or r = 2
n-1 

+ 1. 

Conversely, suppose r = 2
n-1 

+ 1 and that G = [N]H. Then 

obviously, (x
2
)

y
 = (x

y
)

2
 = (x

r
)

2
 = x

2r
 = x

2
 and x

2
 = Z(G). 

Furthermore, NZ(G)  {1}. This implies that Nx
n


12

 

and Hx
n


12 . If in addition, 

1211],[


  n

xxxxyx ry , 

then 
12n

xG . 

Next, let 
22

2
1

1

/ ZZxGG n

n

 



. Then consequently, 

HNxxHxNG
nnn


 111 222 //  with }1{N  

and HH  . Hence, we have by [11], that 12  nZN  and 

2ZHH   or 2ZN   and .12  nZHH  

Finally, consider the case 2ZN   and 

12  nZHH . Then we have |N| = 4 and |H/CH(N)I  

|Aut(N)|2 = 2. But if H is cyclic, then we have CH(N)  H  

Z(G) = {1} and |H|  2. Thus |G| = 8 and n = 2. But this 

contradicts the fact that n  3. Consequently, 12  nZN  

and  bZHH 2 . Hence, N is a maximal subgroup 

of G. 

Now since G/x
2
 = Z2  Z2 and  2)( xG , the only 

possible maximal subgroups of G are x, x
2
, y, and x

2
, xy. 

But 
2212 1

)(  


n

xxxxxy ry
 and 

122 2||
1  
 nn

x . 

Hence, |xy| = 2
n
 and  xxyxyx ,2

. Now consider 

the subgroup x
2
, y. Since Z(G) = x

2
, |1(G)] = 4 and 




yxG
n

,)(
12

1 , we have  yxG ,)( 2

1 . 

Furthermore,  yxGH ,)()( 2

11 . Therefore if N = 

x
2
, y, then N  H  {1}, a contradiction. Hence,  xN , 

 yH  and all split decompositions are isomorphic.* 

REMARK 2.2: Consider the dihedral group D16, of order 

2
5
 with the presentation 

 rn

D  ,1|, 22

16 . 

We obtained the following results from GAP. 

gap> G:= DihedralGroup(IsPermGroup, 32); 

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), 

(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10) ]) 

gap> r:= (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);; 

gap> N:= Subgroup(G, [r]);; 

gap> f:= (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10);; 

gap> H:= Subgroup(G, [f]);; 

gap> Size(N); Size(H); 

16 

2 

gap> IsCyclic(N); 

true 

gap> IsCyclic(H); 

true 

gap> IsNormal(G, N); 

true 

gap> IsNormal(G, H); 

false 

gap> D:= DirectProduct(N, H);; 

gap> Size(D); 

32 

gap> Center(G); 

Group([ (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16) ]) 

gap> s:= (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16);; 

gap> Z:= Subgroup(G, [s]);; 

gap> Size(Z); 

2 

gap> IsNormal(G, Z); 

true 
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gap> IsCyclic(Z); 

true 

gap> quit 

Here, the subgroup N of order 16 consists of all the 

rotations in D16 as follows: 

If we let  = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), 

then N is given by the following presentation 

 N = {n
 : 1  n  16, where 

16
 = 

0
 = 1}. 

The cyclic subgroup N of index 2 in D16 is normal as 

shown above. It is also true by Lagrange’s theorem since [D16 

: N] = |D16|/|N| = 2. 

The subgroup H of order 2 is the cyclic subgroup of D16 

generated by the reflection  = 

(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10) along the line of 

symmetry (1,9), where H is given by the presentation 

}21:{  nH n
    

or  






odd

even

is

is

n

n

iff

iff
H n




1
}{ . 

Now, 

D16 = N  H = ,  = {1, , 2
, 3

, 4
, 5

, 6
, 7

, 8
, 9

, 

10
, 11

, 12
, 13

, 14
, 15

, , ,  

  2, 3, 4, 5, 6, 7, 8, 9, 

10, 11, 12, 13, 14, 15} 

where  is the product of permutations. Thus, the 

subgroup N is complemented in D16. Subsequently, D16 split 

over N and hence, D16 is separable. 

The center Z(D16) of D16 is the non-trivial subgroup {1, 

8
} of D16. It is clearly seen that NZ(D16)  {1} and 

HZ(D16) = {1}. From our simple calculations, we observed 

that r  2
n – 1

 + 1. Hence, the split decompositions of D16 are 

not isomorphic.* 

It is also clear that theorem 2.1 above gives a presentation 

for those non-Abelian separable metacyclic 2-groups with m = 

1 and n  3, that have all split decompositions isomorphic. The 

following result follows directly from theorem 2.1 above. It 

presents other necessary and sufficient conditions for a 

metacyclic 2-group of the type mentioned above to have all its 

split decompositions isomorphic. 

THEOREM 2.3: Supposed G is a finite non-Abelian 

separable metacyclic 2-group of the type 

 ry xxyxyxG
n

,1|, 22
 with n  3. Then the 

following statements are equivalent. 

(i) All split decompositions of the group G are of the form 

G = [N]H, where GN  , N is cyclic of order 2
n
 and H is 

cyclic of order 2; 

(ii) The order |1(G)l = 2
2
; 

(iii) )()( GGZ  ; 

(iv) n-1(G)  G; 

(v) The group G is of class 2. 

 

 

III. SEPARABLE METACYCLIC 2-GROUPS; M  2 

 

In this section, as shown by Kirtland [10] (see theorem 

3.1) that if G is a separable metacyclic 2-group with 

presentation  ry xxyxyxG
mn

,1|, 22
, m  2, 

then G must have all its split decompositions isomorphic. We 

therefore implement the result using GAP Software by 

constructing some finite groups whose subgroups are cyclic. 

THEOREM 3.1: If G is a separable metacyclic 2-group of 

type  ry xxyxyxG
mn

,1|, 22
 with m  2, then 

all its split decompositions are isomorphic [10]. 

PROOF. If the group G is Abelian, then the result follows 

directly from [11]. Now, supposed G is not Abelian. 

Consequently, we shall have r  3 and n  2. We now consider 

three cases. 

CASE 1: Let Ga  where 
12 


m

yxa 
 with  odd and 

2)( ao . 

Now suppose 2)( ao , then 1)(
121 222 
 

mm rxyxa  . 

This implies that 0
12 
m

r  (mod 2
n
) or 

nkr
m

2)1(
12 


  where k is a positive integer. The fact 

that  is odd and |k2
n
 implies that |k. Thus 

nkr
m

2)/(1
12 


 or 12)/(
12 
 nkr

m

 . Hence, 

112)/(
1212  


xxxx
nmm

kry 
. Moreover, since m  2, 

we have 
sy xx

m


22

 where 1  s  2
n
 - 1 and s is odd. This 

implies that s
2
 = -1 (mod 2

n
), a contradiction. Hence, 

2)( ao . 

CASE 2: Let },,,1{)(
1111 2222

1




mnmn

yxyxG . 

Now if 
 yxa   is a nontrivial element of G such that 

2)( ao  and  = 0 or  = 0, then 
12 


m

ya  or 
12 


n

xa  

respectively. If   0 and   0, then 
12  m  and 

12 


m

yxa 
. 

Suppose n = 2. Then by case 1,  = 2 = 2
n-1

. But if n  3 

and since y acts on x, there is a homomorphism 

:yAut(x). Suppose that Ker()  {1}. Then 

)ker(
12 
m

y  and x and 
12 m

y  commute. As a result, 

 22222 )(1
1

xyxyx
mm




. This implies that  = 2
n-1

 

and 
11 22 


mn

yxa . 

Next, supposed Ker() = {1}. Denote Aut(x) by 

},...,,{
1231 n , where 

i

i xx : , for 

12,...,3,1  ni . By [13], we get Aut(x)  L + K, where L 

is cyclic of order 2
n-2

 and generated by 5 , and K is cyclic of 

order 2 generated by 
12 n . Then the only nontrivial elements 

of Aut(x) of order 2 are ,,
1212 1  nn   and 

12 1n  and 

since 2||
12 
m

y , it follows that ,,)(
1212

2
1

1





 nn

m

y   

or 
12 1n . Again if m  2, then j

m

y  


)(
22

 

where
2222 )()(()(

21

j

mm

yy  


. Thus j
2
 = 2

n-1
 + 1 

(mod 2
n
), 2

n
 - 1 (mod 2

n
), or 2

n-1
 - 1 (mod 2

n
). But since j

2
  -1 
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(mod 2
t
) for any integer t >0, we have j

2
 = 2

n - 1
 (mod 2

n
) and 

12 112 


nm

xx y
. 

Finally, given that a
2
 = 1, then 

1)( )22()12(22 111

   nnm

xxyx 
 and since 

122 2||
1  
 nm

x , it follows that 
12  n . Hence, 

11 22 


mn

yxyx   and },,,1{)(
1111 2222

1




mnmn

yxyxG . 

CASE 3: All split decompositions of G are isomorphic. 

Supposed that G is given by the 

presentation  ry xxyxyxrmnG
mn

,1|,)..( 22
, 

and that G = [N]H. Then 

),,1(/)..(
12 rmnGxrmnG

n




 and if n  2, then the 

result is true by induction on n. 

Again, since [x, y] = x
-1

x
y
 = xr

-1
, it implies that G' = xr

-1
 

 x
2
. Now let )()(1

2 1

GZGxz
n




. If ,Nz  

then }1{],[ 1   NxNGNG r
. Thus N  

Z(G) and so, G = N  H. But this yields |1(G)| = 4. Thus, we 

have |1(N)| = |1(H)| = 2. Consequently, N and H each have 

only one subgroup of order 2. But by [12], N and H are either 

cyclic or a generalized quaternion group. In either case, both N 

and H are inseparable and thus by [11], N  x and H  y, or 

N  y and H  x. In either case, H is cyclic, implying that G 

is abelian, a contradiction. 

Hence, z  N and [x/z]y  G(n - 1, m, r)  G/z  

[N/z]Hz/z. As a result, N/z  x/z and H  y or N/z 

 y and H  x/z. In either case, H is cyclic and N is 

abelian. Also if N/z  x/z, then N has order 2
n
 and is of 

exponent at least 2
n-1

. Thus N is isomorphic to nZ
2

 or 

22 1 ZZ n  . Finally, if 22 1 ZZN n   , then we have 

|1(N)| = 4 and |1(G)|  8. This is a contradiction. Thus, N is 

cyclic and if N/z  y, then a similar argument yields that N 

must also be cyclic. Hence, both N and H are cyclic and by 

[1], N  x and H = y.* 

 

A. IMPLEMENTATION OF THEOREM 3.1  

 

Given a structured object X of any sort, symmetry is a 

mapping of the object onto itself which preserves structure. But 

if X is a finite set with no additional structure, then symmetry is 

defined as a bijective mapping from the set to itself, giving rise 

to what is called permutation group Sn. In this section we 

generate the non-Abelian group S16 in GAP and then find some 

of its subgroups with one, two and three generators as follows. 
gap> S:= SymmetricGroup(16); 

Sym( [ 1 .. 16 ] ) 

gap> C:= CyclicGroup(IsPermGroup, 16); 

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) ]) 

gap> r:= (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);; 

gap> s:= (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10);; 

gap> K:= Subgroup(S, [r,s]); 

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), 

(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10) ]) 

gap> Size(S); 

20922789888000 

gap> Factors(20922789888000); 

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 

7, 11, 13 ] 

gap> D:= DirectProduct(C, K); 

<permutation group with 3 generators> 

gap> Size(C); Size(K); Size(D); 

16 

32 

512 

gap> IsNormal(D, C); 

true 

gap> IsNormal(D, K); 

true 

gap> IsCyclic(K); 

false 

gap> Size(C)*Size(K) = Size(D); 

true 

gap> a:= (1,3)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11);; 

gap> R:= Subgroup(S, [r]); 

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) ]) 

gap> Size(R); 

16 

gap> L:= Subgroup(S, [r,a]); 

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), 

(1,3)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11) ]) 

gap> Size(L); 

32 

gap> IsNormal(D, L); 

true 

gap> Size(R)*Size(L) = Size(D); 

true 

gap> IsAbelian(S); 

false 

gap> IsAbelian(D); 

false 

From the above results, the non-Abelian group DS16 is 

the semidirect product of the subgroups C and K of S16 i.e. D = 

C  K. But D = R  L with RC  , LK  . Also, DL  

and DK  . Thus, both L and K splits over D and we write 

D = [K]C = [L]R. Hence, the two split decompositions [K]C 

and [L]R are isomorphic. 

Next, we generate a cyclic group G as a subgroup of S16 

as follows.  
gap> G:= CyclicGroup(IsPermGroup, 16); 

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) ]) 

gap> Elements(G); 

[ (), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), 

(1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16), 

  (1,4,7,10,13,16,3,6,9,12,15,2,5,8,11,14), 

(1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16), 

  (1,6,11,16,5,10,15,4,9,14,3,8,13,2,7,12), 

(1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12), 

  (1,8,15,6,13,4,11,2,9,16,7,14,5,12,3,10), 

(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16), 

  (1,10,3,12,5,14,7,16,9,2,11,4,13,6,15,8), 

(1,11,5,15,9,3,13,7)(2,12,6,16,10,4,14,8), 

  (1,12,7,2,13,8,3,14,9,4,15,10,5,16,11,6), 

(1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8), 

  (1,14,11,8,5,2,15,12,9,6,3,16,13,10,7,4), 

(1,15,13,11,9,7,5,3)(2,16,14,12,10,8,6,4), 

  (1,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2) ] 

gap> a:= G.1; 

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) 

gap> Size(G); 

16 

gap> f:= x -> x^6; 
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function( x ) ... end 

gap> N:= Subgroup(G, [f(a)]); 

Group([ (1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12) ]) 

gap> Elements(N); 

[ (), (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16), 

(1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16), 

  (1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12), 

(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16), 

  (1,11,5,15,9,3,13,7)(2,12,6,16,10,4,14,8), 

(1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8), 

  (1,15,13,11,9,7,5,3)(2,16,14,12,10,8,6,4) ] 

gap> Size(N); 

8 

gap> IsNormal(G, N); 

true 

gap> f:= x -> x^5; 

function( x ) ... end 

gap> K:= Subgroup(G, [f(a)]); 

Group([ (1,6,11,16,5,10,15,4,9,14,3,8,13,2,7,12) ]) 

gap> Size(K); 

16 

gap> b:= (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16);; 

gap> M:= Subgroup(G, [b]); 

Group([ (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16) ]) 

gap> Elements(M); 

[ (), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16) ] 

gap> Size(M); 

2 

gap> Size(G) = Size(M)*Size(N); 

true 

The subgroup N of G generated by the function f(x) = x
6
 

for an element xG is a normal subgroup while the function 

f(x) = x
5
 generated the group KG. Hence, N is complemented 

in G. 

 

 

IV. CONCLUSION 

 

In this paper, we have successfully shown that if G is a 

finite separable metacyclic 2-group with 

presentation  ry xxyxyxG
mn

,1|, 22
, m  1, n 

≥ 3, then all split decompositions of G are either isomorphic 

(if G is Abelian), or G is the Dihedral group of order 2n. We 

therefore conclude that every finite group with the given 

presentation can be expressed as a semidirect product of a 

cyclic group with another cyclic group. 
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