Comparison Of Low Doses Bupivacaine With Neostigmine Combination With Low Dose Bupivacaine With Clonidine For Subarachnoid Block

Olajumoke T.O (FWACS, FMCA)
Raji S.A (D.A)
Ojo K.O (D, A)
Department of Anaesthesia and Intensive Care, LAUTECH Teaching Hospital, Oshogbo, Osun State, Nigeria

Afolayan J.M (FMCA)
Department of Anaesthesia and Intensive Care, Ekiti State Teaching Hospital, Ado-Ekiti, Ekiti State, Nigeria

Abstract:

Background and Objectives: Intrathecal administration of clonidine and neostigmine has been found to have effect separately on prolongation of subarachnoid block. However there have not been many researches comparing the two medications especially in this sub region. This study compared the onset of block, duration and quality of block, return of muscle functions and incidences of complication between combinations of low doses hyperbaric bupivacaine with either neostigmine or clonidine.

Methodology: This randomized double blind study was carried out on 75 ASA I and II patients that had caesarian section under spinal anaesthesia. They were randomized into three groups of twenty five patients each. Group A were given 2.5mls of heavy bupivacaine and 1ml of 75mcg of neostigmine while group B had 2.5mls of heavy bupivacaine and 1ml of 25mcg of clonidine and group C 2.5mg bupivacaine and 1ml of normal saline. The onsets of sensory and motor blocks were noted as well of duration of block and time of return of muscle functions. Incidence of complications was also recorded.

Results: The results showed that Onset of sensory and motor blocks were earlier in groups A and B than in the group C however it was much earlier in group B. The duration of block in the order of decreasing order was B, A and C. There was more incidence of vomiting in group B more than A while there were only few incidence of vomiting in group C. The result shows that intrathecal Neostigmine and clonidine improves the quality and duration of block. While neostigmine does it better than clonidine it was associated with more incidence of vomiting.

Keywords: Neostigmine, Clonidine, bupivacaine, subarachnoid block.

I. INTRODUCTION

Spinal anaesthesia otherwise known as subarachnoid block is a common form of anaesthesia usually used for surgeries below the umbilicus. It is a preferred mode of anaesthesia because it avoids most complications associated with general anaesthesia. It also reduces blood loss, reduces metabolic response to surgery and also the incidence of deep venous thrombosis.

It allows early ambulation and discharge from the hospital.

It is a common practice to add different therapeutic regimen to intrathecal bupivacaine to improve intra operative analgesia, prolong block or improve postoperative analgesia however each of this measures have different side effects.

Opioids were tried but were associated with nausea vomiting and pruritus. This study compared adding clonidine or neostigmine to bupivacaine to improve block.
Neostigmine is a selective α2 adrenoceptor antagonist with receptors in the periphery and spinal neurons. Activation of this adrenoceptors leads to inhibition of neurotransmitter transmission and release of substance P.

Intrathecal neostigmine also increases block by causing the inhibition of breakdown of synaptically produced acetylcholine. This study compared the effectiveness of combination of either clonidine or neostigmine with low dose bupivacaine to enhance block.

II. MATERIALS AND METHODS

After obtaining approval from the hospital ethical committee 75 patients being planned for elective lower segment caesarean sections were recruited for the study. It was a double blinded study; patients were randomized into three groups by picking from computer generated table of random numbers all in a concealed envelopes.

Patients were only recruited when they satisfy the inclusion criteria which included patients ASA I and II, age between 18 and 65. They were excluded if they have neuromuscular disease or any other comorbidities or if they have any history of reaction to any of the study medications.

The study medications were produced by a resident in the department in two mls syringes and labelled A, B and C. Patients were reviewed a day before surgery and basic investigations like packed cell volume, electrolyte urea creatinines and clotting profiles were done. They were fasted for at least ten hours before surgery.

On the morning of surgery in the theatre preoperative equipments check were done, intravenous line established and preoperative vital signs like the blood pressure, pulse rate, respiratory rate and oxygen saturations were checked.

Patients were preloaded with 1litre of normal saline and then seated up while the middle of the imaginary line joining both iliac crests which corresponds to L3/L4 was used as landmark where size 25 pencil tip needle was advanced after infiltration of the skin with 1% lidocaine. The needle was advanced until a give was felt followed with free flow of cerebrospinal fluid. The study drugs were slowly injected into the subarachnoid space with 2.5 mls of bupivacaine and patient take to lie supine. Vital signs were checked and the level of block checked with spirit cotton wool swab.

The time between the injection of the agents and the time when block is well established is noted. The extent of block was assessed using the bromage scale. Intraoperative hypotension was noted as systolic blood pressure less than 90mmHg or 60% below the preoperative value and was treated with additional 500mls of normal saline and if ephedrine in incremental doses of 3mg were given. Block up to T10 or Bromage 3 was taken as optimal for surgery. Blood loss was assessed by counting number of soaked gauzes and measuring the volume of blood in the suctioning machine. Intraoperative vital signs were taken every 5mins for the first 30mins then every 15minutes thereafter.

Motor block assessment were done every 15mins . At the end of surgery the block level and the Bromage scale were noted and patient taken to the recovery room where assessment and monitoring continued.

Time to first analgesic request was noted which is taken as the interval between the intrathecal injection of the study medications and the time of request of the analgesic. The bromage scale at the point of first analgesic request were noted as well as time taken to achieve bromage scale 6. Rescue analgesic was 30mg pentazocine and the total amount given were noted. Pain was also assessed every 15mins in the postoperative period using Visual Analogue Scale (VAS).

Complications like vomiting, bradycardial, hypotension and others were also recorded.

Data was analyzed using SPSS version 16. Data were expressed as mean and standard deviation (SD). Fisher exact test and chi square were used for categorical data with P less than 0.05 considered as significant.

III. RESULTS

The time to first analgesic request was significantly higher in groups B and A than group C. However it was also higher in group B than A p value 0.04 (Table 1)

The VAS score at first analgesic request was also higher in groups C and A than in B while the time to bromage score less than 2 was shorter in group B compared to A and C. (Table 1)

The number of patients that requested for risqué analgesic as well as frequency of analgesics were higher in C and A compared to group B while time to return to full motor function of the lower limb (Bromage 6) was higher in group B compared to A and C. (Table 1)

The three groups were comparable in terms of the preoperative vital signs (Table 2)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Bromage score less than 2 (mins)</td>
<td>4.2±0.52</td>
<td>5.5±0.64</td>
<td>8.4±0.64</td>
<td>0.02</td>
</tr>
<tr>
<td>Mean time to first analgesic request(hr)</td>
<td>2.4±0.08</td>
<td>3.2±0.21</td>
<td>1.74±0.54</td>
<td>0.004</td>
</tr>
<tr>
<td>Frequency of administration of Rescue analgesic</td>
<td>1±0.8</td>
<td>0</td>
<td>2±0.5</td>
<td>0.002</td>
</tr>
<tr>
<td>VAS at first Analgesic request</td>
<td>7.2±0.82</td>
<td>6.4±0.90</td>
<td>8.08±1.86</td>
<td>0.04</td>
</tr>
<tr>
<td>No of patients that had supplementary analgesic</td>
<td>12</td>
<td>0</td>
<td>23</td>
<td>0.001</td>
</tr>
<tr>
<td>Time to recovery of lower limb motor function/Bromage scale 6(hr)</td>
<td>2.4±0.82</td>
<td>2.82±0.64</td>
<td>1.92±0.82</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Table 1: Comparison of Mean VAS scores at first analgesic request, frequency of analgesic, Mean time for first analgesic request and number of patients requesting for supplementary analgesic between the studies populations

Table 2: Comparison of mean baseline vital signs of study groups

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Pulse rate (beats/min)</th>
<th>Systolic blood pressure (mmHg)</th>
<th>Diastolic blood pressure (mmHg)</th>
<th>Base line SPO2 (%)</th>
<th>Baseline respiratory rate (cycles/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP A</td>
<td>72.0(30.2)</td>
<td>100(18.2)</td>
<td>70(11.8)</td>
<td>98.3(1.1)</td>
<td>20.0(2.0)</td>
</tr>
<tr>
<td>GROUP B</td>
<td>88.6(14.3)</td>
<td>120.4(11.8)</td>
<td>84.8(10.4)</td>
<td>98.6(1.2)</td>
<td>19.4(2.9)</td>
</tr>
<tr>
<td>GROUP C</td>
<td>86.4(12.8)</td>
<td>130.2(12.1)</td>
<td>90.6(11.6)</td>
<td>98.4(1.2)</td>
<td>18.6(2.5)</td>
</tr>
</tbody>
</table>

Table 3: Comparison of Mean intraoperative vital signs of study groups

<table>
<thead>
<tr>
<th>GROUP A</th>
<th>N (%)</th>
<th>GROUP B</th>
<th>N (%)</th>
<th>GROUP C</th>
<th>N (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bradycardia</td>
<td>1(3%)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Hypotension</td>
<td>0(0.0%)</td>
<td>0(0.0%)</td>
<td>0(0.0%)</td>
<td>0(0.0%)</td>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td>Vomiting</td>
<td>04(13.3%)</td>
<td>22(73.3%)</td>
<td>02(6.6%)</td>
<td>02(6.6%)</td>
<td></td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 4: Incidence of complications

V. CONCLUSION

From the result of this study it was concluded that neostigmine when administered intrathecally prolongs subarachnoid block with bupivacaine. If confronted with the need for choice between neostigmine and clonidine, neostigmine does it better though with more incidence of vomiting?

VI. RECOMMENDATION

Neostigmine and clonidine use should be encouraged to potentiate subarachnoid block. More studies using a lower dose of neostigmine is recommended to know if the vomiting associated with it is dose related and possibly reduce the incidence.

REFERENCES

[7] Gupta S. Postoperative analgesia with intrathecal neostigmine; two different doses of 75 and 50 micrograms with heavy bupivacaine. Anaesthesiol. 2008; 25:1

