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I. INTRODUCTION 

 

The best practice to avoid human mortality caused by 

life threatening diseases like myocardial infarction (MI) is to 

detect them early and prevent their onset. One approach is to 

devise computational methods that capitalize on clinical 

biomarkers to better screen the patients for their potential risk 

of experiencing (future) MI. Broadly, clinical screening/risk 

prediction  tools  are very important as it could potentially lead 

to the following benefits at the individual patient-level: for  

example, 1) when patients become knowledgeable of their 

health risk and with good physician-patient therapeutic 

relationship, they would be more willing to make changes 

to  their  lifestyle and  adhere  to  treatment regimens [1],  2) 

allows clinicians to promptly recommend effective therapeutic 

or preventive measures (e.g., lifestyle changes, treatment of 

subclinical manifestation, etc.) to their patients [2], and 3) 

if such screening tools were to be integrated into electronic 

health record system and executed automatically to analyze 

individuals health risk, the number of unscreened patients who 

are at risk of a disease could be reduced dramatically [3]. The 

key ramification of wide adoption of clinical screening tools is 

the possibility of significantly reducing the number of avoidable 

mortality. However, the development of versatile, reliable, 

and accurate computer aided MI screening tools which the 

clinicians can use in the clinics/hospitals to instantly predict 

patients risk remains a challenge. 

The conventional approaches for assessing the risk of 

individuals experiencing MI include risk scoring system and 

survival curves [4][6]. These, however, have limitations like 

the inability to substantially identify minority of individuals 

with subsequent risk of experiencing MI [7]. Moreover, clinical 

Abstract: Today medical services had came a long way to treat a patient with different diseases. Among them, one 

leading disease is myocardial infarction. Which cannot be seen through the naked eyes. It comes immediately when it has 

reached its limitations. The cost to treat this problem is very high and cannot affordable to all patients. So this system 

typically create a huge amount of datasets. The creation of dataset is taken as input from the patients and generate a 

result using kmean clustering algorithm. Clusturing is the process of portioning a group of data points into a small 

number of clusters. A quantitative approach would be to measure certain features of the risk prediction and predict the 

percentage. The goal is to assign a cluster to each data points. The number of clusters should match the data. An 

incorrect choice of the number of cluster will invalidate the whole process. An empirical way to find the best number of 

clusters is to try kmean clustering with different number of clusters and measure the result. We have enhanced this system 

by adding the features of datasets with 12 attribute for predicting the risk (blood pressure, lack of exercise, poor diet, 

heredity, blood test report etc..). Finally this system will predict the heart attack with remedies for overcoming it and with 

suggestion from the specialist. 

    

Index Terms: Classification, clinical decision support system, clinical risk prediction, medical screening, myocardial 

infarction. 
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biomarkers and symptoms seldom follow a linear relationship 

and the expected outcome at the individual patient-level does 

not always abide by the rules of epidemiology [8]. As a result, 

conventional risk scoring systems which model relationships 

in a linear manner often flounder in view of these challenges 

[9], [10]. 

In recent years, there is an exponential increase in the 

amount of clinical and molecular data collected from routine 

medical examination. To overcome the challenges associated 

with human scale of thinking and analysis, data mining 

techniques which have been postulated as a central feature for 

future health- care system [11] became a popular method for 

extracting insights from this data deluge. Advantages of using 

data mining techniques include the capability of dealing with 

plethora of information, solving nontrivial problems, 

producing data-driven prediction models, and handling 

nonlinear relationships among biomarkers. Examples of data 

mining techniques used to estimate disease risk include work 

from: 1) Wiens et al. [12] who employed support vector 

machine (SVM) to identify patients who are at high risk of 

experiencing hospital acquired Clostridium difficile (C. diff); 

and 2) Khan et al. [13] who used artificial neural network 

(ANN) for discriminating small, round blue-cell tumors 

(SRBCTs). 

One important component of risk prediction tools is to 

provide clinicians with the flexible to customize (e.g., change 

the range and how far into the future the prediction would be) 

and use a risk prediction model that they deemed most 

beneficial for their patients. To this end, we explore the 

possibility of customizing MI risk prediction models to better 

meet the patients needs and clinicians expectation. 

Particularly, the effect of sample age and prediction resolution 

two aspects that are not commonly examined in the literature 

on the performance of MI risk prediction models constructed 

using SVM [14][16] and evolutionary data-conscious artificial 

immune recognition system (EDC-AIRS) [17] algorithms 

were investigated. Here, sample age refers to the average age 

of individuals found in the baseline (i.e., input) dataset used 

to construct the clinical risk prediction model while 

prediction resolution refers to the prediction scale (i.e., 

number of years into the future where prediction of MI 

occurrence begins) and interval (i.e., time du- ration, in years, 

that marks the start and end of MI outcomes to be considered) 

employed by the clinical risk prediction model. In the view of 

the rapid aging population worldwide and the relatively high 

prevalence of MI among the elderly, participants amassed from 

the Cardiovascular Health Study (CHS) [18] consisting of 

subjects aged 65 and above were analyzed. Further, with the 

wide range of clinical measurements and risk factors 

accrued during the CHS observational study, it makes the 

CHS dataset a valuable source of information for this paper. 

The rest of the paper is organized as follows. Section II pro- 

vides details of CHS dataset, and delineates the methodology 

involved in developing the predictive models. Section III pro- 

vides the experimental results achieved by the risk prediction 

models developed using different combinations of sample age 

and prediction resolution. Key results are discussed in Section 

IV and conclusions are drawn in Section V. 

 

 

II. MATERIALS AND METHODS 

 

In Section II-A, details of CHS dataset are provided. This 

dataset, however, consists of a significant percentage of 

missing data and a highly skewed data distribution (commonly 

known as the class imbalanced data problem). Hence, for 

effective analysis, data imputation and class data balancing are 

performed and described in Sections II-B and II-C, 

respectively. Section II-D explains how the various MI risk 

prediction models based on different combinations of baseline 

data and prediction resolution were developed and validated. 

 

A. CHS DATASET 

 

The CHS dataset, as described in [18], is an 

epidemiology study of risk factors for cardiovascular diseases 

in elderly aged 65 and above. It contains two cohorts recruited 

at different phases. The first cohort consists of 5201 subjects 

from four U.S. communities, namely Forsyth County, North 

Carolina; Sacramento County, California; Washington County, 

Maryland; and Pittsburgh, Pennsylvania. An additional 687 

African Americans were subsequently recruited forming the 

second cohort. Eligible individuals were sampled from 

Medicare eligibility lists in each area. Eligible participants 

include all individuals sampled from the Health Care 

Financing Administration (HCFA) sampling frame they were 

65 years or older at the time of examination, non-

institutionalized, expected to remain in the area for the next 3 

years, and able to give informed consent and did not require 

a proxy respondent at baseline. Individuals who were 

wheelchair bound at home at baseline or receiving hospice 

treatment, radiation therapy or chemotherapy for cancer were 

excluded. Eligible individuals were examined yearly from 

 

B. DATA IMPUTATION 

 

Data imputation is the process of substituting missing 

entries in a dataset with plausible values and aims to improve the 

quality of the data. It was performed using weighted K-nearest 

neighbor (KNN) because of its excellent performance in 

estimating missing values [22], [23]. Moreover, it has the 

capability to estimate both qualitative and quantitative 

attributes. Hence, it is highly suitable for interpolating the 

missing values in the CHS dataset. Individuals with unknown 

MI status and clinical features that were uninformative (i.e., 

features with consistent value through- out) were first removed 

from the analysis. Individuals and clinical features with high 

percentage of missing entries were also removed. This is to 

ensure that there is an adequate supply of complete entries for 

weighted KNN to reference when estimating the missing 

values, which in turn promotes a more accurate data 

imputation process [22][24]. The resulting dataset was next 

normalized to unit variance to ensure that the attributes with 

large scale do not dominate the (Euclidean) distance mea- sure 

[25]. Subsequently, the optimal value of K for each clinical 

feature was determined by 10-fold cross validation and used for 

the data imputation process. The type of replacement method 

used by weighted KNN depends on the data type. For instance, if 

categorical (continuous) data were encountered, the weighted- 

mode (weighted-mean) of the KNN was used to assign the value 
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for the missing entries. The use of weighted KNN estimation 

has been demonstrated in [22], [26] to be robust and accurate. 

 

C. CLASS IMBALANCE DATA PROBLEM 

 

In order to create an unbiased dataset for SVM and EDC- 

AIRS algorithms to learn from, under-sampling of the 

majority class is necessary. The Kennard Stone (KS) algorithm 

[27] was employed to perform this task because of its 

excellent performance as demonstrated in a comparative study 

[28]. This algorithm sequentially selects representative data 

that are uniformly scattered across the data domain space. 

This is carried out by first selecting the data object that is 

closest to the mean of the dataset and is included as the first 

data candidate. Subsequently, the data object that is most 

distant from the first one (based on Euclidean distance) is 

included as the second data candidate. The next data object is 

chosen by identifying the one farthest away from the previously 

selected data candidates. This process repeats until the desired 

number of candidates has been identified [28], [29]. 

In this study, the KS algorithm was used to under-sample 

the majority class found in the imputed CHS dataset. The 

number of candidates to select is equivalent to the number of 

samples in the minority class. In other words, after this process, 

the number of controls and cases would be identical. 

 

D. MI RISK PREDICTION MODELS 

 

Two algorithms (SVM and EDC-AIRS) were employed 

to develop MI risk prediction models. SVM algorithm is a 

robust supervised learning algorithm that is capable of 

yielding excellent generalization performance on an extensive 

area of problems [30][32]. It is derived from statistical 

learning theory and is capable of solving linearly and 

nonlinearly separable problems. Fundamentally, SVM 

performs classification through the construction of an N-

dimensional hyperplane that optimally separates the data into 

two or more categories whereby the margin of separation 

between the different categories is maximized. EDC-AIRS 

algorithm [17] is a supervised classification algorithm inspired 

by the principles and processes associated with the human 

immune system. It performs classification by first constructing 

a pool of memory cells (i.e., candidate solutions in the form of 

data vectors) that are representative of the training data 

through repetitive optimization of the (values of the) memory 

cells. Optimization was carried out by robustly adapting the 

memory cells to the different density, distribution, and 

characteristics exhibited by each data class in the training data. 

Finally, with the utilization of the generated memory cells 

pool, KNN is used to classify unseen data observations. This 

algorithm, when tested on several widely benchmarked 

datasets, has demonstrated highly competitive classification 

performance [17]. To adopt a ceteris paribus experimental 

design, the parameters for both algorithms were first tuned 

using genetic algorithm (GA) and subsequently, feature 

selection was conducted (using GA) to identify predictive 

biomarkers. The GA parameters were determined 

experimentally to work well with this clinical prediction 

problem and kept constant for all experiments. The setup 

details of GA are as follows: population size: 100; maximum 

generation: 100; natural selection: stochastic universal 

sampling; crossover type: discrete recombination; crossover 

probability: 0.8; mutation rate: 1/P, where P is the number of 

parameters/features. The parameter details for SVM are kernel 

function: radial basis function (RBF); cost: [2−5, 213]; 

gamma: 

[2−15, 23]; and for EDC-AIRS are seed: 1; clonal 

rate: 10; hypermutation rate: 2; stimulation threshold: 0.9; 

initial memory pool size: [0, 200]; KNN value: [1, 15]; 

affinity threshold scalar: [0, 1]; total resource: [150, 300]; 

Radiusdensity = [0, 3]; Radiusma x = [0, 3].  

Clinical data recorded during the 5th to 11th year in which 

the CHS clinical study was undertaken were utilized. The 

reason for using clinical data recorded from year 5 onward 

was because clinical examinations taken by the two different 

cohorts recruited at different phases synchronized from that 

year onward. The reason for ending the prediction at year 11 

is because from year 12 onward, participants were only 

monitored annually via phone calls and no clinical 

examinations were conducted. 

To test the hypothesis, prediction models using different 

baseline datasets (with different sample age) capable of 

predicting the risk of experiencing MI at various prediction 

scales and intervals were developed. As illustrated in Fig. 1, 

eight different prediction models were designed to investigate 

how time factor in relation to the onset of MI would affect the 

performance of the prediction model. Three different baseline 

datasets were used. These datasets contain clinical 

examination results recorded in year 5, year 7, and year 9 of 

the CHS study. Each of these datasets was used to predict 

future. Three different prediction scales (1, 3, and 5 years) and 

three different prediction intervals (2, 4, and 6 years) were 

investigated. Specifically, healthy individuals present in year 5 

of the CHS dataset were used as the baseline data to predict 

whether one would experience MI from year 6 to 11 

(prediction scale: 1 year; prediction interval: 6 years), year 6 

to 7 (prediction scale: 1 year; prediction interval: 2 years), 

year 8 to 9 (prediction scale: 3 years; prediction interval: 2 

years) and year 10 to 11 (prediction scale: 

5 years; prediction interval: 2 years). Similarly, clinical 

examination results of healthy participants in year 7 was 

initialized as the baseline data, where prediction of whether one 

would suffer from MI whether an individual would experience 

MI in the near from year 8 to 11, year 8 to 9, and year 10 to 11 

were con- ducted. Likewise, clinical data recorded in year 9 

were utilized to perform prediction of MI occurrence from year 

10 to 11. 

Each baseline dataset was randomly split into two subsets 

having balanced class distribution. The first subset contains 

70% of the initial data. Using this subset, the prediction model 

was trained and tuned based on 10-fold cross validation. The 

second subset, which contains the remaining 30% of the data, 

was used to validate the developed model. This splitting 

process was repeated three times and independently used to 

develop and test the respective prediction model. It is highly 

encouraged to do so to avoid the developed model from 

capturing not only the true associations, but, also, 

idiosyncratic features of the training data, which often 

produces an overly optimistic model [33]. Three commonly 
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used performance measurements were employed to evaluate 

the prediction models developed namely sensitivity, 

specificity, and balanced accuracy (i.e., average between 

sensitivity and specificity). 

Finally, to determine whether the prediction models 

developed using SVM and EDC-AIRS algorithms are 

statistically different from each other, McNemar’s test was 

conducted. This statistical test was chosen as it has been 

demonstrated to have low type-1 error [34]. For each 

prediction model, this test was carried out by first recording 

the prediction outcomes obtained (by each algorithm) when 

tested using each validation dataset. The results obtained 

from each algorithm were then used to algorithms. 

 
Figure 1: MI risk prediction models of various prediction 

scales and intervals. MI risk prediction at various time scales 

and intervals using the CHS dataset was performed. 

Prediction scale refers to the number of years into the future 

where prediction of MI occurrence begins while prediction 

interval refers to the time duration (in years) that marks the 

start and end of MI outcomes to be considered 

 
Figure 2: Contingency table for McNemar’s test. “a” 

indicates the number of data items misclassified by both SVM 

and EDC-AIRS algorithms; “b” represents the number of data 

items misclassified by SVM algorithm but correctly classified 

by EDC-AIRS algorithm; “c” denotes the number of data 

items misclassified by EDC-AIRS algorithm but correctly 

classified by SVM algorithm; “d” dictates the number of data 

items correctly classified by both SVM and EDC-AIRS 

construct the contingency table shown in Fig. 2. Referring to 

the figure, if the sum of b and “c” is greater than 25, chi- 

square test with 1 degree of freedom is used for performing 

McNemar’s test. Otherwise, to provide a better estimation of 

small sample (i.e., b + c ≥ 25), binomial distribution is used 

for (exact) McNemar’s test. The prediction model is 

considered to be statistically different from the ground truth if 

the p-value computed using McNemar’s test is smaller than 

0.05. 

 

 

III. EXPERIMENTAL RESULTS 

 

A. DATA PREPROCESSING 

 

Table I provides the details of the resulting CHS datasets 

after the removal of records and clinical features with 

significant missing entries. 

Table II offers the details of the datasets used to develop 

and test the MI prediction models after data imputation and 

class data balancing were performed. 

 
This sample size refers to the number of individuals that 

remain in the CHS dataset after removal of records with 

significant missing entries. 

yrXYYZZ denotes that the prediction model uses clinical 

measurements observed in year X to make prediction of 

whether one would experience MI from year YY to ZZ.  

Table 1: Details of The Imputed Chs Dataset  

 
All training and validation datasets contain equal number of 

cases and controls. 

#The p-value of McNemar’s test is presented examining 

whether the performance of the SVM algorithm is statistically 

different from EDC-AIRS algorithm. 

Table 2: Details of Datasets Used To Build the Prediction 

Models 
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Figure 3: Classification performance of SVM and EDC-AIRS 

algorithms (cross validated). (a) Sensitivity performance 

metric. (b) Specificity performance metric. (c) Balanced 

accuracy performance metric. These performance 

measurements were obtained by performing 10-fold cross 

validation for each prediction model 

 
Figure 4: Classification performance of SVM and EDC-AIRS 

algorithms (tested with validation dataset). (a) Sensitivity 

performance metric. (b) Specificity performance metric. (c) 

Balanced accuracy performance metric. These performance 

measurements were obtained by evaluating each developed 

prediction model with their respective validation dataset. 

 

B. MI RISK PREDICTION MODELS 

 

Prediction models using baseline dataset with different 

sample age at various time scales and intervals were 

developed using the training datasets. Cross validation was 

carried out to evaluate the performance of each prediction 

model. For all prediction models developed, results (as shown 

in Fig. 3) indicate consistently high predictive performance 

was achieved by both SVM and EDC-AIRS algorithms. For 

example, a balanced accuracy of at least 0.95 and 0.81 was 

achieved by SVM and EDC-AIRS algorithms, respectively. 

To assess whether the prediction models developed 

generalize well, validation was performed using the validation 

datasets. Results, as presented in Fig. 4, demonstrate that a 

balanced accuracy of at least 0.81 and 0.71 was achieved by 

SVM and EDC-AIRS algorithms, respectively. 

McNemar’s test was conducted to determine whether the 

performance of SVM and EDC-AIRS algorithms is 

statistically different from each other. Results (as shown in 

Table II) indicate that for most of the prediction models 

(except prediction models yr70811 and yr91011), the 

performance of SVM and EDC-AIRS algorithms are 

statistically different. 

IV. DISCUSSION 

 

MI risk prediction models developed using baseline 

datasets with different sample age, and based on different 

prediction resolution combinations were analyzed. Cross 

validation was utilized during the training phase as an 

approach to evaluate and develop potent MI risk prediction 

models. The resultant prediction models developed by both 

algorithms achieved a relatively high sensitivity, specificity, 

and balanced accuracy (for SVM algorithm, the respective 

performance achieved is at least 0.94, 0.96, and 0.95; while for 

EDC-AIRS algorithm, the respective performance achieved is 

at least 0.89, 0.62, and 0.81). An investigation of whether the 

prediction models developed were overtrained was conducted 

by validating each developed model with an unseen dataset 

(i.e., not used to develop the prediction model). The aim of 

this step was to assess the generalizability of the developed 

models. Results indicate that SVM algorithm (and EDC-AIRS 

algorithm) across all prediction models tested— achieved a 

sensitivity, specificity, and balanced accuracy of at least 0.84, 

0.70, and 0.82 (and 0.84, 0.40, and 0.67), respectively. 

Furthermore, it can be observed that in general there is a drop 

in the validation sensitivity (SVM: 0.060 ± 0.054; EDC-AIRS: 

0.073 ± 0.052), specificity (SVM: 0.154 ± 0.058; EDC-AIRS: 

0.219 ± 0.124), and balanced accuracy (SVM: 0.107 ± 0.036; 

EDC-AIRS: 0.146 ± 0.070) among all the prediction models 

developed. It is noteworthy that the drop in performance is 

less severe for SVM algorithm (when compared to EDC-AIRS 

algorithm). This shows that SVM algorithm tends to perform 

better on noisy data even after data imputation was conducted. 

This observation is supported by the results obtained from the 

performance of McNemar’s test. From this statistical 

evaluation, it was demonstrated that SVM algorithm 

outperforms EDC-AIRS algorithm for six out of eight 

prediction models tested. 

Prediction models developed (with SVM algorithm) using 

baseline dataset from year 5 (and year 7), and tested using 

their respective validation datasets have shown comparable 

sensitivity, specificity, and balanced accuracy. Analysis of 

variance (ANOVA) test was conducted on the respective 

group of prediction models (i.e., developed using either year 5 

or 7 as baseline dataset) that has a prediction interval of 2 

years. Results demonstrate that they are statistically 

comparable with p-value of 

0.47 for prediction models using baseline dataset from 

year 5 (and 0.25 for prediction models using baseline dataset 

from year 7). This signifies that predication scale does not 

have a significant impact on the performance of (SVM-based) 

prediction models developed and tested using subjects aged 65 

and above. Similar analysis was performed on prediction 

models developed based on different prediction interval. 

Results indicate that these models are statistically comparable 

with p-value of 0.92 and 0.88 for prediction models developed 

using baseline dataset from year 5 and 7, respectively. This 

means that prediction interval does not have a significant 

impact on the performance of prediction models developed 

using SVM algorithm. 

As for prediction models developed using EDC-AIRS 

algorithm, similar analysis was conducted. For prediction 

models developed using baseline dataset from year 5 (and year 
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7) that are based on 2-year prediction interval, and tested using 

their respective validation datasets, ANOVA test was 

conducted. Results indicate that the prediction models in their 

respective group are statistically comparable having a p-value 

of 0.71 (for prediction model using year 5 baseline dataset) 

and 0.93 (for prediction model using year 7 baseline dataset). 

This indicates that predication scale does not have a 

significant impact on pre- diction models developed using 

EDC-AIRS algorithm as well. Likewise, prediction models 

developed based on different prediction interval were 

analyzed. Results show that these models are statistically 

comparable having a p-value of 0.12 and 0.14 for prediction 

models developed using baseline dataset from year 5 and 7, 

respectively. This suggests that prediction interval does not 

have a significant impact on the performance of pre- diction 

models developed using EDC-AIRS algorithm as well. A 

summary of the p-values discussed is provided in Table III. 

 
Table 3: Statistical Evaluation of Prediction Resolution 

Analysis of prediction models that aim to predict the 

likelihood of MI occurrence in individuals subsequent 2 years 

(i.e., yr50607,” yr70809,” and yr91011) indicate comparable 

performance with p-value of 0.50 and 1.00 for SVM and 

EDC-AIRS algorithms, respectively. Comparison of age 

among individuals belonging to different baseline datasets 

indicates that they are statistically different (p-value < 0.01). 

This portends that sample age does not have a significant 

impact on the performance of prediction models. 

Among all the prediction models developed, key 

biomarkers identified to be statistically significant by both 

SVM and EDC- AIRS algorithms are related to cognitive 

function, physical function, depression/life events, 

electrocardiography, general changes to health/lifestyle, and 

medications. These biomarkers, in general, are also identified 

as clinically significant in the literature [35][38]. This suggests 

that statistically significant biomarkers can also be clinically 

significant providing a promising avenue for identifying the 

potential cardiovascular risk factors to be evaluated in clinical 

trials. 

One benefit of performing risk prediction using different 

prediction resolution and sample age is that it allows more 

refined and progressive risk prediction to be conducted 

(without compromising accuracy). This provides the 

advantage of estimating the seriousness of a disease one is 

experiencing; enabling clinicians to offer a more personalized 

management and/or therapeutic strategy to the patient. 

The limitation of this investigation includes the use of a 

single dataset to evaluate the effect of sample age and 

prediction resolution in relation to the performance of MI risk 

prediction. This limits the power to conclusively state how 

each factor influences the performance of the prediction 

model. Nevertheless, it does provide some insights on whether 

sample age and pre- diction resolution have an impact on the 

performance of clinical risk prediction model. In view of the 

observations from this study and the importance of screening 

since young, we aim to investigate the effect of prediction 

resolution and sample age on younger subjects as part of our 

future work. 

 

 

V. CONCLUSION 

 

Early detection of individuals with high risk of 

experiencing MI is very important clinically, but has proved to 

be elusive. To this end, we investigated the effect of sample 

age and prediction resolution in relation to the development of 

accurate clinical risk prediction model. Our experiments 

indicate that both sample age and prediction resolution do not 

have a significant impact on prediction models developed 

using subjects aged 65 and above. Table performance with p-

value of 0.50 and 1.00 for SVM and EDC-AIRS algorithms, 

respectively. Comparison of age among individuals belonging 

to different baseline datasets indicates that they are 

statistically different (p-value < 0.01). This portends that 

sample age does not have a significant impact on the 

performance of prediction models. 

Among all the prediction models developed, key 

biomarkers identified to be statistically significant by both 

SVM and EDC- AIRS algorithms are related to cognitive 

function, physical function, depression/life events, 

electrocardiography, general changes to health/lifestyle, and 

medications. These biomarkers, in general, are also identified 

as clinically significant in the literature [35][38]. This suggests 

that statistically significant biomarkers can also be clinically 

significant providing a promising avenue for identifying the 

potential cardiovascular risk factors to be evaluated in clinical 

trials. 

One benefit of performing risk prediction using different 

pre- diction resolution and sample age is that it allows more 

refined and progressive risk prediction to be conducted 

(without compromising accuracy). This provides the 

advantage of estimating the seriousness of a disease one is 

experiencing; enabling clinicians to offer a more personalized 

management and/or therapeutic strategy to the patient. 

The limitation of this investigation includes the use of a 

single dataset to evaluate the effect of sample age and 

prediction resolution in relation to the performance of MI risk 

prediction. This limits the power to conclusively state how 

each factor influences the performance of the prediction 

model. Nevertheless, it does provide some insights on whether 

sample age and pre- diction resolution have an impact on the 

performance of clinical risk prediction model. In view of the 

observations from this study and the importance of screening 

since young, we aim to investigate the effect of prediction 

resolution and sample age on younger subjects as part of our 

future work. 

 

 

VI. CONCLUSION 

 

Early detection of individuals with high risk of 

experiencing MI is very important clinically, but has proved to 
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be elusive. To this end, we investigated the effect of sample 

age and prediction resolution in relation to the development of 

accurate clinical risk prediction model. Our experiments 

indicate that both sample age and prediction resolution do not 

have a significant impact on prediction models developed 

using subjects aged 65 and above. 

 Overall, high validation sensitivity, specificity, and 

balanced accuracy were achieved by SVM algorithm. This 

opens the opportunity for constructing predictive models 

capable of detecting MI early, allowing clinicians to take 

preventative measures promptly, improving the quality of 

individuals’  life, and reducing avoidable mortality. 

In view of these results, we suggest the use of different 

prediction resolution to provide a more detailed health 

screening of elderly subjects so that more appropriate 

preventative measurements in relation to the individual’s risk 

level can be taken. 
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