On αrω-LC Continuous Maps In Topological Spaces

Prabhavati S. Mandalageri

Department of Mathematics, K.L.E'S S.K. Arts College & H.S.K. Science Institute, Hubballi, Karnataka State, India

R. S. Wali

Department of Mathematics, Bhandari Rathi College, Guledagudd, Karnataka State, India

Abstract: In this paper, we study some distinct notions of $ar\omega$ -LC continuous, $ar\omega$ -LC* continuous, $ar\omega$ -LC** continuous functions are introduced and we discuss some of their properties.

Keywords: arw-locally closed sets, arw-lc-continuous, arw-lc irresolute, arw- submaximal space.

I. INTRODUCTION

Kuratowski and Sierpinski[11] introduced the notion of locally closed sets and locally continuous in topological spaces. According to Bourbaki [6], a subset of a topological space (X, τ) is locally closed in (X, τ) if it is the intersection of an open set and a closed set in (X, τ) . Stone[14] has used the term FG for a locally closed subset. Ganster and Reilly[9] have introduced locally closed sets, which are weaker forms of both closed and open sets. After that Balachandran et al [2,3], Gnanambal[10], Arockiarani et al[1], Pusphalatha[12] and Sheik John[13] have introduced α -locally closed, generalized locally closed, semi locally closed, semi generalized locally closed, regular generalized locally closed, strongly locally closed and w- locally closed sets and their continuous maps in topological space respectively. Recently as a generalization of closed sets arco-closed sets and arco-continuous maps were introduced and studied by R.S. Wali et[4,5]

II. PRELIMINARIES

Throughout the paper (X,τ) , (Y,σ) and (Z,μ) (or simply X,Y and Z) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , Cl(A), Int(A), α Cl(A) and A^c denote the closure of A, the interior of A , the α -closure of A and the compliment of A in X respectively.

We recall the following definitions, which are useful in the sequel.

DEFINITION 2.1

A subset A of topological space (X, τ) is called a

- ✓ locally closed (briefly LC or lc) set [7] if A=U∩F, where U is open and F is closed in X.
- ✓ rw-closed set [13] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open.
- ✓ ar ω -closed set [11] if α Cl(A) ⊆ U whenever A ⊆ U and U is ar ω -open.
- ✓ ag-locally closed set if A=U∩F, where U is α g-open and F is α g-closed in X.
- ✓ α -locally closed set if A=U∩F, where U is α -open and F is α -closed in X.
- ✓ wg-locally closed set if A=U∩F, where U is wg-open and F wg-closed in X.
- ✓ gp-locally closed set if A=U∩F where U is gp-open and F is gp-closed in X.
- ✓ gpr-locally closed set if $A=U\cap F$ where U is gpr-open and F gpr-closed in X.
- ✓ g-locally closed set if A=U∩F where U is g-open and F is g-closed in X.
- ✓ rwg-locally closed set if A=U∩F where U is rwg-open and F is rwg-closed in X.
- ✓ gspr-locally closed set if A=U∩F where U is gspr-open and F is gspr-closed in X.

- ✓ ωα-locally closed set if A=U∩F where U is ωα-open and F is ωα-closed in X.
- ✓ agr-locally closed set if $A=U\cap F$ where U is agr-open and F agr-closed in X.
- ✓ gs- locally closed set if A=U∩F where U is gs-open and F is gs-closed in X.
- ✓ w-lc set if A=U∩F where U is w-open and F is w-closed in X.
- ✓ gprw-lc set if $A=U\cap F$ where U is gprw-open and F is gprw-closed in X.
- ✓ rw-lc set if A=U∩F where U is rw -open and F is rw closed in X.
- ✓ rga-lc set if A=U∩F where U is rga-open and F is rgaclosed in X.
- ✓ $\alpha r \omega$ -LC set if A=U∩F where U is $\alpha r \omega$ -open and F is $\alpha r \omega$ -closed in X.
- ✓ $\alpha r \omega$ -LC* set if A=U∩F where U is $\alpha r \omega$ -open and F is closed in X.
- ✓ $\alpha r \omega$ -LC** set if A=U∩F where U is open and F is $\alpha r \omega$ closed in X.

DEFINITION 2.2

A topological space (X, τ) is said to be a

- (i) Sub maximal space [7] if every dense subset of (X, τ) is open in (X, τ) .
- (ii) Door space [8] if every subset of (X, τ) is either open or closed in (X, τ) .
- (iii) $T_{\alpha r\omega}$ -space[4] if every $\alpha r\omega$ -closed set is closed

DEFINITION 2.3

A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

- (i) LC-continuous [9](resp. α -continuous [12], α g-LCcontinuous [10]) if $f^{-1}(G)$ is locally closed (resp. α -locally closed, α g-locally closed) set.
- (ii) LC-irresolute [9] if $f^{1}(G)$ is locally closed set in (X,τ) for locally closed set G of (Y,σ) .

III. αrω-LC CONTINUOUS FUNCTIONS

In this section, we define $\alpha r \omega$ -LC continuous maps which is lies between LC-continuous and αgLC -continuous functions and study their relations with existing ones. We also define $\alpha r \omega$ -LC* continuous maps, $\alpha r \omega$ -LC** continuous maps.

DEFINITION 4.1

A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called $\alpha r \omega$ -LC continuous (resp. $\alpha r \omega$ -LC* continuous, $\alpha r \omega$ -LC** continuous) function if $f^{1}(G) \in \alpha r \omega$ -LC(X, τ) (resp. $f^{1}(G) \in \alpha r \omega$ -LC*(X, τ), $f^{1}(G) \in \alpha r \omega$ -LC**(X, τ)) for each open set G of (Y, σ).

THEOREM 4.2

If $f:(X,\tau) \rightarrow (Y,\sigma)$ is LC continuous then f is $\alpha r \omega$ -LC continuous (resp. $\alpha r \omega$ -LC* continuous and $\alpha r \omega$ -LC** continuous).

PROOF: Let G be open set in Y. Since f is LC continuous then $f^{1}(G)$ is locally closed set in X. Every locally closed set is $\alpha r \omega$ -locally closed set. Therefore $f^{1}(G)$ is $\alpha r \omega$ -locally closed set in X. Hence f is $\alpha r \omega$ -LC continuous.

similarly other proof.

The converse of the above theorem need not be true as seen from the following example.

EXAMPLE 4.3

Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, Y\}$. Then the identity map f: $(X,\tau) \rightarrow (Y,\sigma)$, f is around LC-continuous, around $\alpha = LC^{**-}$ continuous but not LC-continuous, since for the open set $A = b\} \in (Y, \sigma), f^{-1}(\{b\}) = \{b\} \in LC(X, \tau).$

THEOREM 4.4

If $f:(X,\tau) \rightarrow (Y,\sigma)$ aLC continuous function then ar ω -LC continuous.

PROOF: Let G be open set in Y. Since f is α -LC continuous then $f^{-1}(G)$ is α -locally closed set in X. Every α -locally closed set is $\alpha r \omega$ -locally closed set. Therefore $f^{-1}(G)$ is $\alpha r \omega$ -locally closed set in X. Hence f is $\alpha r \omega$ -LC continuous.

Following example shows that converse need not be true.

EXAMPLE 4.5

Let $X = \{a, b, c, d\} = Y, \sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}$. Then the identity map $f:(X,\tau) \rightarrow (Y,\sigma)$ is arm LC-continuous but not α -lc-continuous, since for the open set $\{a,b,c\}$ in $(Y,\sigma), f^{-1}(\{a,b,c\}) = \{a,b,c\}$ is not α -lc-set in (X, τ) .

THEOREM 4.6

If $f:(X,\tau) \rightarrow (Y,\sigma) \ \alpha r \omega$ -LC continuous function then αg -LC continuous.

PROOF: Let G be open set in Y. Since f is $\alpha r \omega$ -LC continuous then $f^{-1}(G)$ is $\alpha r \omega$ -locally closed set in X. Every $\alpha r \omega$ -locally closed set is αg -locally closed set. Therefore $f^{-1}(G)$ is αg -locally closed set in X. Hence f is αg -LC continuous.

Following example shows that converse need not be true.

EXAMPLE 4.7

Let $X = \{a, b, c\} = Y, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}$. Then the identity map f: $(X, \tau) \rightarrow (Y, \sigma)$ is ag-LC-continuous but not $\alpha \tau \omega$ -lc-continuous, since for the open set $\{b\}$ in $(Y, \sigma), f^{-1}(\{b\}) = \{b\}$ is not $\alpha \tau \omega$ -lc-set in (X, τ) .

THEOREM 4.8

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is arw-LC*-continuous (resp arw-LC**-continuous) then f is arw-LC -continuous.

PROOF: Let U be open in Y and f: $(X, \tau) \rightarrow (Y, \sigma)$ is ar ω -LC*-continuous or ar ω -LC**-continuous. f⁻¹(U) ar ω -LC* set (resp. ar ω -LC** set) in X s By Every ar ω -LC* set (resp. ar ω -LC** set) is ar ω -LC set. Therefore f is ar ω LC continuous.

The converse of the above theorem need not be true as seen from the following examples.

EXAMPLE 4.9

Let X = {a, b, c} = Y, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a,b\}, Y\}$. Let f: (X, τ) \rightarrow (Y, σ) be the identity map. Then f is $\alpha \tau \omega$ -LC-continuous but not $\alpha \tau \omega$ LC*-continuous and not $\alpha \tau \omega$ LC**-continuous. For the open set A = {a,b} \in (Y, σ), f¹({a, b}) = {a,b} $\notin \alpha \tau \omega$ LC*(X, τ) and {a, b} $\notin \alpha \tau \omega$ LC**(X, τ).

REMARK 4.10

Composition of two $\alpha \omega$ -LC-continuous (resp. $\alpha \omega$ -LC*continuous, $\alpha \omega$ -LC**-continuous) maps need not be $\alpha \omega$ -LCcontinuous (resp. $\alpha \omega$ -LC*-continuous, $\alpha \omega$ -LC**-continuous) as seen from the following example.

EXAMPLE 4.11

Let $X = Y = Z = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}, \mu = \{\phi, \{b\}, \{c\}, \{b, c\}, Z\}$. Define a map f:(X, $\tau) \rightarrow (Y, \sigma)$ and g:(Y, $\sigma) \rightarrow (Z, \mu)$ are the identity map. Then both f and g are $\alpha \tau \omega$ -LC -continuous ($\alpha \tau \omega$ -LC*-continuous, $\alpha \tau \omega$ -LC**-continuous) but the composition gof:(X, $\tau) \rightarrow (Z, \mu)$ is not $\alpha \tau \omega$ -LC-continuous (resp. $\alpha \tau \omega$ -LC*-continuous, $\alpha \tau \omega$ -LC**continuous), since for the open set A = {b} in (Z, μ), (gof) ¹({b}) = f⁻¹(g⁻¹{b}) = f⁻¹{b} = {b} \notin \alpha \tau \omega-LC(X, τ) (resp. {b} $\notin \alpha \tau \omega$ -LC*(X, τ)).

THEOREM 4.12

If f: $(X, \tau) \rightarrow (Y, \sigma)$ be $\alpha \tau \omega$ -LC-continuous (resp. $\alpha \tau \omega$ -LC*-continuous, $\alpha \tau \omega$ -LC**-continuous) maps and g: $(Y, \sigma) \rightarrow (Z, \mu)$ be continuous then gof: $(X, \tau) \rightarrow (Z, \mu)$ is $\alpha \tau \omega$ -LC-continuous (resp. $\alpha \tau \omega$ -LC*-continuous, $\alpha \tau \omega$ -LC**-continuous) maps.

PROOF: Let G be open set in Z, $(\text{gof})^{-1}(G) = f^{-1}(g^{-1}(G))$ is ατω-LC closed set since g: $(Y, \sigma) \rightarrow (Z, \mu)$ be continuous, g⁻¹(G) be open set in Y and also since f: $(X, \tau) \rightarrow (Y, \sigma)$ be ατω-LC-continuous (resp. ατω-LC*-continuous, ατω-LC**continuous) maps, $f^{-1}(g^{-1}(G)) \in \alpha \tau \omega$ -LC(X, τ)(resp. $f^{-1}(g^{-1}(G)) \in \alpha \tau \omega$ -LC**(X, τ)). Therefore gof:(X, τ) → (Z, μ) is ατω-LC-continuous (resp. ατω-LC*-continuous, ατω-LC**-continuous) maps.

IV. ar@-LC IRRESOLUTE FUNCTIONS

In this section, we define $\alpha r \omega$ -LC irresolute maps, $\alpha r \omega$ -LC* irresolute maps, $\alpha r \omega$ -LC** irresolute maps and study some of their properties.

DEFINITION 5.1

A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called $\alpha \tau \omega$ -LC irresolute (resp. $\alpha \tau \omega$ -LC* irresolute, $\alpha \tau \omega$ -LC** irresolute) function if f ¹(G) $\in \alpha \tau \omega$ -LC(X, τ) (resp. $f^{1}(G) \in \alpha \tau \omega$ -LC*(X, τ), $f^{1}(G) \in \alpha \tau \omega$ -LC**(X, τ)) for each G $\in \alpha \tau \omega$ -LC(Y, σ) (resp. G $\in \alpha \tau \omega$ -LC*(Y, σ), G $\in \alpha \tau \omega$ -LC**(Y, σ)).

THEOREM 5.2

If $f:(X,\tau)\to(Y,\sigma)$ is arw-irresolute then f is arw-LC irresolute.

Proof: Let f is arm-irresolute and V \in arm-LC(Y, σ). Then V=U\capG for some arm-open set U and some arm-closed set G in (Y, σ). we have $f^1(V) = f^1(U \cap G) = f^1(U) \cap f^1(G)$, where f $^1(U)$ is arm-open and $f^1(G)$ is arm-closed set in (X, τ), since f is arm-irresolute. This shows that $f^1(V)$ is arm-locally closed set in X. Hence f is arm-LC irresolute.

THEOREM 5.3

Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be function

- (i) If f is $\alpha r \omega$ -LC-irresolute then f is $\alpha r \omega$ -LC continuous.
- (ii) If f is $\alpha r \omega$ -LC* irresolute then f is $\alpha r \omega$ -LC* continuous

(iii) If f is $\alpha r \omega$ -LC** irresolute) then f is $\alpha r \omega$ -LC** continuous *PROOF:* (i) Let G be open set in Y and also G be $\alpha r \omega$ -locally closed set in Y, Since f is $\alpha r \omega$ -LC-irresolute then f ¹(G) is $\alpha r \omega$ -locally closed set in X. Hence f is $\alpha r \omega$ -LC continuous.

Similarly (ii) and (iii)

The converse of the above theorem need not be true as seen from the following example.

EXAMPLE 5.4

Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Then the identity map f: $(X, \tau) \rightarrow (Y, \sigma)$, f is $\alpha \omega$ -LC-continuous, $\alpha \omega$ -LC*-continuous and $\alpha \omega$ -LC**-continuous but not $\alpha \omega$ -LC-irresolute (resp. $\alpha \omega$ -LC* irresolute, $\alpha \omega$ -LC** irresolute), since for the open set $A = \{b\} \in \alpha \omega$ -LC(Y, σ), f¹($\{b\}$)= $\{b\} \notin \alpha \omega$ -LC(X, τ)(resp. f¹($\{b\}$) $\notin \alpha \omega$ -LC**(X, τ)).

THEOREM 5.5

Any map defined on a door space is $\alpha r \omega$ -LC continuous (resp $\alpha r \omega$ -LC irresolute).

Proof: Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map, where (X, τ) be a door-space and (Y,σ) be any topological space. Let $A \in \sigma$ (resp, $A \in \alpha r \omega$ -LC(Y, σ)). Then by the assumption on (X,τ) , f¹(A) is either open or closed. In both cases f¹(A) $\in \alpha r \omega$ -LC(X, τ) and therefore f is $\alpha r \omega$ -LC continuous (resp. $\alpha r \omega$ -LC irresolute).

THEOREM 5.6

Let $f \colon (X,\,\tau) \to (Y,\sigma)$ and $g \colon (Y,\sigma) \to (Z,\mu)$ be any two functions.

- (i) If f is $\alpha \tau \omega$ -LC-irresolute and g is is $\alpha \tau \omega$ -LC-continuous then gof :(X, τ) \rightarrow (Z, μ) is $\alpha \tau \omega$ -LC-continuous.
- (ii) If f is $\alpha r \omega$ -LC*-irresolute and g is is $\alpha r \omega$ -LC*-continuous then gof :(X, τ) \rightarrow (Z, μ) is $\alpha r \omega$ -LC*-continuous.
- (iii) If f is $\alpha r \omega$ -LC**-irresolute and g is is $\alpha r \omega$ -LC**continuous then gof :(X, τ) \rightarrow (Z, μ) is $\alpha r \omega$ -LC**continuous.

PROOF: (i) Let U∈(Z,μ), since g is is arω-LCcontinuous, $g^{-1}(U) \in ar\omega$ -LC(Y,σ). Then $f^{-1}(g^{-1}(U)) \in ar\omega$ -LC(X,τ) since f is arω-LC-irresolute. So $f^{-1}(g^{-1}(U))=(gof)^{-1}$ (U)∈arω-LC(X,τ). Hence gof is arω-LC-continuous.

(ii) and (iii) are similar to (i).

THEOREM 5.7

Let f: $(X,\,\tau)\to(Y,\sigma)$ and g: $(Y,\sigma)\to(Z,\mu)$ be any two functions

- (i) If f is $\alpha r \omega$ -LC-irresolute and g is is LC-continuous then gof :(X, τ) \rightarrow (Z, μ) is $\alpha r \omega$ -LC-continuous.
- (ii) If f is arω-LC-irresolute and g is is arω-continuous then gof :(X, τ)→(Z,μ) is arω-LC-continuous.
 PROOF:
- (i) (i) Let $U \in (Z,\mu)$, since g is is LC-continuous, g⁻¹(U) \in LC(Y, σ) and g⁻¹(U) \in ar ω -LC(Y, σ). Then f⁻¹(g⁻¹(U)) \in ar ω -LC(X, τ) since f is ar ω -LC-irresolute. So f⁻¹(g⁻¹(U))=(gof) -1(U) \in ar ω -LC(X, τ). Hence gof is ar ω -LC-continuous.
- (ii) Let $U \in (Z,\mu)$, since g is is ar ω -continuous, $g^{-1}(U) \in \alpha r \omega$ -O(Y, σ), every ar ω -open set is ar ω -lc closed set and $g^{-1}(U) \in \alpha r \omega$ -LC(Y, σ). Then $f^{-1}(g^{-1}(U)) \in \alpha r \omega$ -LC(X, τ) since f is $\alpha r \omega$ -LC-irresolute. So $f^{-1}(g^{-1}(U))=(g\sigma f)^{-1}(U) \in \alpha r \omega$ -LC(X, τ). Hence gof is $\alpha r \omega$ -LC-continuous.

THEOREM 5.8

Let $f \colon (X,\,\tau) \to (Y,\sigma)$ and $g \colon (Y,\sigma) \to (Z,\mu)$ be any two functions.

- (i) If f and g are $\alpha r \omega$ -LC-irresolute then gof :(X, τ) \rightarrow (Z, μ) is $\alpha r \omega$ -LC- irresolute.
- (ii) If f and g are $\alpha r \omega$ -LC*-irresolute then gof :(X, τ) \rightarrow (Z, μ) is $\alpha r \omega$ -LC*- irresolute.
- (iii) If f and g are $\alpha r \omega$ -LC**-irresolute then gof :(X, τ) \rightarrow (Z, μ) is $\alpha r \omega$ -LC**- irresolute.

PROOF: (i) Let U∈αrω-LC(Z,μ), since g is is αrω-irresolute s, g⁻¹(U)∈αrω-LC(Y,σ). Then f⁻¹(g⁻¹(U))∈αrω-LC(X,τ) since f is αrω-LC-irresolute. So f⁻¹(g⁻¹(U))=(gof)⁻¹

 $^{1}(U) \in \alpha r \omega$ -LC(X, τ). Hence gof is $\alpha r \omega$ -LC-irresolute.

(ii) and (iii) are similar to (i).

REFERENCES

- I. Arockiarani, K. Balachandran and M.Ganster (1997), Regular generalized locally closed sets and RGL-Continuous functions Indian J. Pure appl. Math., 28(5), 661-669.
- [2] K. Balachandran, P. Sundaram and H. Maki (1996), On generalized locally closed sets and GLC-continuous functions, Indian. J. Pure Appl. Math., 27(3), 235-244.
- [3] K. Balachandran, Y. Gnanambal and P. Sundaram (1997), On generalized locally semi-closed sets and GLSCcontinuous functions, Far East J. Math., Sci Special Volume Part-III, 189-200.
- [4] Benchalli S. S., P.G.Patil and T. D. Rayanagouda (2009), αrω-closed sets in Topological Spaces, The Global JI Appl Maths and Math Sciences, Vol.2, No.1-2.53-63.
- [5] Benchalli S. S. and P.G.Patil (2010), Some New Continuous Maps in Topological Spaces, Jl of Advanced Studies in Topology, Vol.1, No.2, 16-21.
- [6] N. Bourbaki (1966), General topology Part I, Addison-Wesley, Reading, Mass.
- [7] J. Dontchev (1995), On sub maximal spaces, Tamkang J. Math., 26, 253-260.
- [8] J. Dontchev (1995), On door spaces, Indian Jl. Pure Appl. Math., 26, 873-881.
- [9] M. Ganster and I. L. Reilly (1989), Locally closed sets and LC-continuous functions, Internal J. Math. and Math. Sci., 12, 417-424.
- [10] Y. Gnanambal (1998), Studies on generalized pre-regular closed sets and generalization of locally closed sets, Ph.D, Thesis Bharathiar University, Coimbatore.
- [11] C. Kuratowski and W. Sierpinski (1921), Sur les differences deux ensembles fermes, Tohoku Math .Jl., 20 22-25.
- [12] A. Pushpalatha (2000), Studies on generalizations of mappings in topological spaces, Ph.D., thesis, Bharathiar University, Coimbatore.
- [13] M. Sheik John (2002). A study on generalizations of closed sets on continuous maps in topological spaces and bitopological spaces, Ph.D., thesis, Bharathiar University, Coimbatore.
- [14] M. Stone (1980), Absolutely FG spaces, Proc. Amer. Math. Soc., 80, 515-520
- [15] R.S Wali & P. S Mandalgeri, On α Regular ω-closed sets in topological spaces, Int. J of Math Archive. 2014; 5(10):68-76
- [16] R. S.Wali & P.S. Mandalgeri, On α Regular ω -open sets in topological spaces, J. of comp & Math Sci., Vol 5(6), 2014, pp 490-499