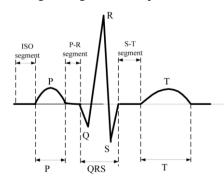
Review On Denoising And Detection Of QRS Complex Using Mamemi And Derivative Filter

Anureet Kaur

Anu Sheetal


Electronics & Communication Department, Guru Nanak Dev University, Regional Campus, Gurdaspur

Abstract: Wireless QRS detection in ECG is necessary for the diagnosing various heart diseases. It displays the electrical activity and present state of the human heart. Number of techniques has been used previously for the accurate detection of ECG signal that are accompanied with certain disadvantages like less accuracy, less signal to noise ratio, resource complexity etc. The technique that is used here for the noise removal consists of derivative filter and mamemi filter beside the high pass and low pass filter. This technique is originated to provide better results in respect of accuracy, specificity, sensitivity etc. and efficiently eradicates low and high frequency noise artifacts.

Keywords: Electrocardiograph (ECG), QRS complex detection, derivative filter, mamemi filter

I. INTRODUCTION

ECG reports the electrical variations that arise in the heart. Any change in the normal ECG signal can cause cardiac problems. ECG signal involves different waves that are P, Q, R, S and T as shown in the fig. 1. These waves collectively constitute cardiac cycle. Doctors use this graph to measure the heart rate of a person and in case of any discrepancy or change in normal pattern, they take the required action. Here, P wave appears due to the atrial polarization with the duration of 0.1 seconds and QRS complex results because of ventricular polarization consisting of long isoelectric period.

Figure 1.1: Normal ECG signal

QRS complex detection and consecutive R peaks interval is important to detect the heart rate. But there are some monitoring problems that can interfere with the ECG signal. These are listed as

A. ARTIFACTS

This problem occurs due to the excessive movement of the patient. Poor contact of the electrodes can also affect the detection process.



Figure 1.2: Artifacts

B. INTERFERENCE

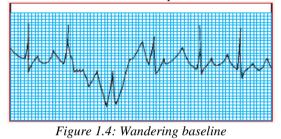

This occurs due to the power leakage and interference from other room equipment. This appears on the baseline of the ECG signal which is unable to read.

Figure 1.3: Interference

C. WANDERING BASELINE

This problem occurs due to the respiration process, poor electrodes etc. Further this cause the non-stationary baseline which can be issue for the detection procedure.

D. FAULTY EQUIPMENT

Overused equipment and broken cables can badly affect the QRS detection as well as the patient's life.

These interruptions in the normal signal can act as a barrier in diagnosing the actual cardiac disorder from which the person is suffering. Also, when a person suffers from any disease QRS complex takes different patterns. So, there is great need to improve the QRS detection methods for the precise detection of the QRS complex. Number of methods has been used earlier that have certain shortcomings. So, upgraded method has been proposed to overcome the noise issues. This includes the combination of mamemi filter and derivative filter along with the high pass and low pass filter. Mamemi comes from maximum mean minimum and this filter effectively eliminates baseline wander. Further, following this first order derivative filter is used. Various parameters such as accuracy, detection error rate, sensitivity etc. will be used to analyze the results with the help of recordings from MIT/BIH database.

II. RELATED WORK

Many different techniques have been proposed for detection of QRS wave in ECG signal. Indu Saini et. al [1] have used K-Nearest Neighbor algorithm (KNN) for QRS detection. Two databases, CSE and MIT/BIH database are used for the evaluation. Filtering of ECG signal is done by band pass filter so as to diminish the false detection.

Comparison between two databases is made using different parameters. Monisha et al [2] compare two filtering techniques. These are band pass filtering and Savitzky-Golay filtering. Band pass filtering includes low pass and high pass filter, which has been taken from Pan Tompkins algorithm. In both types of filtering, signal to noise ratio is calculated and compared to find out the best one. Hongjun [3] use Matlab software for the QRS wave detection with MIT/BIH arrhythmia database. In this, noise is removed by butterworth filter and further analysis is done on the basis of wavelet transform. Ranjeet et al [4] propose wavelet filter method which uses Kaiser windows with run length encoding and simple linear optimization to derive the coefficients. The improved thresholding technique is used in this. Performance is compared with three parameters, percent root mean square difference (PRD), compression ratio (CR) and signal to noise ratio (SNR). Raul et al [5] compare three algorithms, Pan Tompkins algorithm, Hamilton and Tompkins algorithm and Phasor algorithm. Furthermore, software is developed as outline for the QRS detection algorithms. A.R. et al [6] present a tunable notch filter for ECG QRS detection. This filter effectively removes muscle contraction noise and power line interference. In this, filter coefficients are computed and noise is removed within the specified frequency range. This helps to improve the signal to noise ratio. David et al [7] propose a Mamemi filter for the efficient elimination of baseline wander. This was suitable method for the portable and wearable devices. Santanu et al [8] enhance the ECG signal by using adaptive thresholding technique along with Hilbert Transform for the accurate detection of the R peaks. MIT/BIH database is used for evaluating the experimental results. Sachin et al [9] present total variation technique (TVD) for locating the R peaks. Forty eight records of MIT/BIH database are used for the calculation and evaluation purposes.

III. LITERATURE SURVEY

Year	Author	Journal/	Title
		conference	
2012	Indu Saini,	Journal of	QRS detection
	Dilbag Singh,	Advanced	using K-Nearest
	Arun Khosla	Research	Neighbor algorithm
			(KNN) and
			evaluation on
			standard ECG
			databases.
2012	Dr. Monisha	Biomedical	Determination of
	Chakraborty	Signal	Signal to Noise
	and Shreya	Processing and	Ratio of
	Das	Control	Electrocardiograms
			Filtered by Band
			Pass and Savitzky-
			Golay Filters
2012	Hongjun	International	An Improved QRS
	Zhang	Conference on	Wave Group
		Solid State	Detection
		Devices and	Algorithm and
		Materials	Matlab
		Science	Implementation
2012	K. Ranjeet,	International	ECG Signal
	A. Kuamr,	Conference on	Compression using

	Rajesh K.	Modelling,	optimum wavelet	
	Pandey	Optimisation and	Filter Bank based	
		Computing	on Kaiser Window	
2013	Raul Alonso	Conference on	A comparison of	
	Alvarez,	ENTERprise	three QRS detection	
	Arturo J.	Information	algorithms over a	
	Mendez	Systems	public database	
	Penin, X.			
	Anton Vila			
	Sobrino			
2015	A.R. Verma,	3rd International	Adaptive Tunable	
	Y. Singh	Conference on	Notch Filter for	
		Recent Trends in	ECG Signal	
		Computing	Enhancement	
2015	David	Biomedical	Simple real-time	
	Castells-	Signal	QRS detector with	
	Rufas, Jordi	Processing and	the MaMeMi filter	
	Carrabina	Control		
2016	Santanu	Global	De-noising of ECG	
	Sahoo,	Colloquium in	Signal and QRS	
	Prativa	Recent	Detection using	
	Biswal,	Advancement	Hilbert Transform	
	Tejaswini	and Effectual	and Adaptive	
	Das, Sukanta	Researches in	Thresholding	
	Sabut	Engineering,		
		Science and		
		Technology		
2016	Sachin	6 th International	Total Variation	
	Kumar,	conference on	Denoising based	
	Neethu	Advances in	Approach for R-	
	Mohana,	Computing and	peak Detection in	
	Prabaharan, K	Communications	ECG Signals	
	P Soman			
Table 1				

Table 1

IV. GAPS IN THE LITERATURE

It has been observed from the survey that still ample progress is needed in the QRS detection techniques. Various limitations are observed from the survey. The techniques that are used previously affect the quality of the ECG signal. They have lesser accuracy and high detection error rate. Sensitivity and specificity values were also less. Their energy cost increases due to the high computational complexity and high resource need.

V. CONCLUSION

The proposed method i.e. combination of mamemi filter and derivative filter is capable of eradicating high frequency and low frequency noise from the ECG signal. Improved technique has been suggested for the accurate detection of the QRS complex. Performance evaluation is performed with MIT/BIH database. Different parameters are used for the comparison.

REFERENCES

- [1] Indu Saini, Dilbag Singh and Arun Khosla, "QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases," Journal of Advanced Research, vol. 4, 331–344, 2012.
- [2] Dr. Monisha Chakraborty and Shreya Das, "Determination of Signal to Noise Ratio of Electrocardiograms Filtered by Band Pass and Savitzky-Golay Filters," Biomedical Signal Processing and Control, vol. 4, 830 – 833, 2012.
- [3] Hongjun Zhang, "An Improved QRS Wave Group Detection Algorithm and Matlab Implementation," International Conference on Solid State Devices and Materials Science, vol. no. 25, 2012.
- [4] K. Ranjeet, A. Kuamr, Rajesh K. Pandey, "ECG Signal Compression using optimum wavelet Filter Bank based on Kaiser Window," International Conference on Modelling, Optimisation and Computing, vol. 38, pp. 2889 – 2902, 2012.
- [5] Raul Alonso Alvarez, Arturo J. Mendez Penin, X. Anton Vila Sobrino, "A comparison of three QRS detection algorithms over a public database", Conference on ENTERprise Information Systems, vol. no. 9, 1159 – 1165, 2013.
- [6] A.R. Verma, Y. Singh, "Adaptive Tunable Notch Filter for ECG Signal Enhancement," 3rd International Conference on Recent Trends in Computing, vol. no. 57, 332 – 337, 2015.
- [7] David Castells Rufas, Jordi Carrabina, "Simple real-time QRS detector with the MaMeMi filter," Biomedical Signal Processing and Control, vol. 21, pp 137-145, 2015.
- [8] Santanu Sahoo, Prativa Biswal, Tejaswini Das, Sukanta Sabut, "De-noising of ECG Signal and QRS Detection using Hilbert Transform and Adaptive Thresholding," Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology, vol. no. 25, 68 – 75, 2016.
- [9] Sachin Kumar, Neethu Mohana, Prabaharan, K P Soman, "Total Variation Denoising based Approach for R-peak Detection in ECG Signals," 6th International conference on Advances in Computing and Communications, vol. 93, pp. 697-705, 2016.