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"Dy(t)=f(ty(t)+a(ty(t))

Abstract: In this paper, we establish existence and uniqueness of solutions for a class of boundary value problem for
fractional differential equations involving the Caputo fractional derivative in Banach Space.

Foreach teJ =[0,T], 1<a<2y(0)=y,, Y(T)=Y;
These results are obtained by using the fixed point technique.

I. INTRODUCTION

"Dy(t)=f(ty(t)+a(ty())

for each
teJ:[O,T],l<aS2 .1
y(0)=Y,.y(T)=y, 1.2)
Where ‘D~ Caputo fractional derivative
f:[0,T]JxR—R and q:[0,T]xR—R both are

continuous function and y; € R differential equations of

fractional order have recently proved to be valuable tools in
the modeling of many phenomena in various fields of science
and Engineering.

Applied problems require definitions of fractional derivatives
allowing the utilization of physically interpretable initial

conditions, which contain y(0), y'(0)., etc. the same

requirements of boundary conditions. Caputo’s fractional
derivative satisfies these demands.

For more details on the geometric and physical
interpretation for fraction derivatives of both the Riemann-
Liouville and Caputo types. In this project, we present
existence and uniqueness results for the problem (1.1)-(1.2)
involving Caputo’s fractional derivatives. We give the results,
one based on schaefer’s fixed point theorem (Theorem 3.1)
and another one based on Banach fixed point theorem
(Theorem3.3) .Finally we present an example. These results
can be considered as a contribution to this emerging field.

In this section, we introduce notations, definitions and
preliminary facts which are used throughout this paper By
C(J,R) we denote the Banach space of all continuous functions
from J into R with the form,

Iyl :sup{|y(t)| ‘tel }

Il. THE FRACTIONAL ORDER INTEGRAL

The fractional (arbitrary) order integral of the function
heL([a,b],R,) oforder @ € R, is defined by
t (t _ S)O{—l
1Zh(t) = | ~—=—~—h(s)ds
O =], 1y e
Where I'" is the gamma function when a=0, we write

1“h(t) =h(t) * ¢, (1)

Where(pa(t) _ t>-0  and @, (t)=0 for t<0
()

and @, — S(t)

as & —> 0, where § is the delta function.

A. RIEMANN-LIOUVILLE FRACTIONAL ORDER

DERIVATIVE

For a function h given on the interval [ab] the a"
Riemann-Liouville fractional order derivative of h, is defined

by
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(Ds+h)(t)=ﬁ(%j [{t=s) "n(s)as

Hence, n=[cc]+1 and [«] denote the integer part of «
B. CAPUTO FRACTIONAL ORDER DERIVATIVE

For a function h given on the interval [a,b], the Capto
fractional order derivative of order o of h, is defined by

(CD;h)(t) = ﬁjt(t - S)n_a_lh(n) (s)dsWhere

n=[cc]+1

C. STATEMENT AND FIRST CONSEQUENCES OF
ARZELA-ASCOLI THEOREM

A sequence {fn}neN of continuous function on an

interval | = [a, b] is uniformly bounded if there is a number M
such that

f,(x)|<M

For every function f, belonging to the sequence, and every
X€ [a, b]. The sequence is equicontinuous if, for every &> 0,
there exists 6> 0 such that

| fn (X) - fn (y)| <&

Whenever |x — y| <¢ for all functions f, in the sequence.
Succinctly, a sequence is equicontinuous if and only if all of
its elements admit the same modulus of continuity. In simplest
terms, the theorem can be stated as follows:

Consider a sequence of real-valued continuous functions

{fn }neN defined on a closed and bounded interval [a, b] of

the real line. If this sequence is uniformly bounded and
equicontinuous, then there exists a subsequence (fy) that
converges uniformly.

The converse is also true, in the sense that if every
subsequence of {f,} itself has a uniformly convergent
subsequence, then {f.} is uniformly bounded and
equicontinuous.

D. DEFINITION: EXISTENCE AND UNIQUENESS OF
SOLUTION

Let us start by defining what we mean by a solution of the
problem (1)-(2)

A function yeC? ([O,T], R) with its oc-derivative
exists on [0, T] is said to be a solution of (1)-(2) If y satisfies
the equation, *D“y (t) = f (t,y(t))+d(t,y(t)) onJand

conditions y(0)= Y, and Y (T ) =Y;

For the existence and uniqueness of solutions for the
problem (1.1)-(1.2)
We need the following auxiliary lemmas:

LEMMA: 2.6

Letax >0, Then the fractional differential equation
D’h (t) =0 has solutions

h(t)=c,+ct+CtP +.c+C, t" ™ ¢ R, i=0,
| PSR n-1, n=[«]+1

LEMMA: 2.7

Let x>0, then
1“D* (h(t)) =h(t)+Co+C +Cy+ e+t
forsome ¢ eR, i=0,12,....... n-1, n=[«]+1

As a consequence of lemmas 3.2 and 3.3.we have the
following result which is useful in what follows

LEMMA: 2.8

Let 1<a <2 and Let h:[0,T]—> R be continuous.
A function y is a solution of the fractional integral equation

y(t) :i)j;(t—s)ﬁh(s)ds—%w)j;ﬁ —s)”’lh(s)ds—[%—l)yo +%yT -3

I'(a

If and only if y is a solution of the fractional BVP.
‘Dry(t)=h(t). te[0,T] — @
y(0)=Y,. ¥(T)=¥; — (5)

On the first result based on schaefer’s fixed point
theorem.

THEOREM: 2.9 (BANACH’S FIXED POINT THEOREM)

Let T be a contraction on a Banach space X. Then T has a
unique fixed point.

THEOREM:
THEOREM]

2.1.1 [SCHAEFER’S FIXED POINT

Assume that X is a Banach space and that T : X — X is
a continuous compact mapping.Moreover assume that the set

U {xe X :x=aT(x)}

0<4<1
Is bounded. Then T has a fixed point.

I1l. EXISTENCE OF SOLUTIONS

A. STATEMENT OF SCHAEFER’S FIXED POINT
THEOREM

Assume that X is a Banach space and that T : X — X is
a continuous compact mapping.Moreover assume that the set

U {xe X :x=aT(x)}

0<1<1
Is bounded. Then T has a fixed point.
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Using this statement for following existence theorem.
B. EXISTENCE SOLUTIONS OF THEOREM

Assume that,

H1]: f :[0,T]><R—> R, q:[O,T]xR—)R
are continuous function.

[H2]: There exists a constant k > 0 such that

(s y(©)] (s (o)) <kly(s)

Then the BVP (1.1)-(1.2) has at least one solution on [0,
T].

both

PROOF

We shall use schaefer’s fixed point theorem to prove that
F has a fixed point. The proof will be given in several steps.

STEP 1:
F is continuous

Let {yn} be a sequence such that,

y, = yinC([0,T];R)
Then for each te [0 T]
\F(yn)(t) Fy)]<

r( 3o () +a(s. Yo ()]~ f (5, ¥(8) +a(s, y(9))]

r(a) 1T =) O[5, () + (5 Y, D] 5, ¥(6N) + (s, (o]

sup{F(y, )(t)fF(y)(t)\}SSUp{—

@k [ e=sytas[ (| £ s, ya (0] +[acs, v, (D)= (| (5, y(s)| +[acs, y(s))]

Tk L rog 1ds[\f<sy(s))\ Jats, o (s)N) = (1 (s, y(s)I +[ats, y(s))) ] }

sun{\F(y YO -F ()|}

{ [ (s ya(D]+ats, va (D))= (| F (s, yisN|+[ats, yisN))] }

= [1(T —s)"dssup| [(\f(s,yn(s))\ [acs, y,,(s))\)—(\f(s,y(s))Mq(s,y(s))\)]}

{ [klya()=ky|ys)] }

l"( )
sup{|F (v,)(0) - F()®)} <

1 t
T'(x)”°

1 T w
+@J'0 (T —s)dssup{ [k|y,(s)|—ky|y(s)] }

k.T* k.T“
= FOL = gl gl
2k. T
IF(y.) - F(y>||w——||vn yl.
[(a+1

Since f and q are continuous functlons, then we have,

[F(y) = F(Y)], asn—e

STEP 2:

F maps bounded sets into bounded sets in C ([O,T ]; R)

Indeed, it is enough to show that for any 77" >0, There
exists a

eachy € Bn*

positive  constant | such  that for
= {y eC([0,T];R): ||y||w Sn*}, we have

[F[, <1
By[H1] and [H2] we have for each t €[0,T |

\F(Y)(t)\<fjl t-s) \f(s y(s) +a(s, y(s)|ds +——

r( 3o I (T =)™ |f (s, y(s)) + (s, ¥(s))[ds +|ye

l"()

[F®[< ) Df(s y(s)+a(s, V(S))\]d5+ f (T*S)””Df(s ¥(8) +a(s. y(s))[Jds +y- |

kly( )ds +]y;|

e )'[

IF(y)(®)] <

()

1"( )
SO
F(a +1)

( o

k|Y( )|

"Ta+1) T+
2KT

3m|¥(5)|+|>’r|

sup{|f(y)<t)|}ssup{f Iy« |yT|}

2KT*~
I« +1)

[y )Ilw— oYL+

< 2kT“
INa+1)

————sup{|y(s)+|y: |}

77*+|yT| (77 >O)

Thus [F (Y, <1 Where | :FZ(k—T“n* vl

a+1l)
STEP 3:
F maps bounded sets into
ofC([0,T];R).
Let t,t, € [O,T],t1 <t,,Bn" be a bounded set of
C ([O,T]; R) asinstep 2, and Let y € Bny*

Then
Ft)-F(L)] = ‘ij“[m 5=t -9) [ (5. y(s) +d (s, y(s))]ds

equicontinuous  sets

(s, y(s)) +d(s, y(S))]dS+( )j (T =9)**[f (s, y(s) +d(s, y(s))]ds

T )j (t=o) Tr(@) b

Wty |
FOG) < 1 )j[

- Y

j (t, =) [| F (5. y(s))| +]as, y(s))\]ds+Tr(a)j (T
(t tl)
+ T [yz-

\F(y)(q "~ (t-s) I f (s v +a(s y()as

—

=) *[f(s,y(s)) +q(s, y(s))]ds

r(a)f [t =9~ (t,~ )" ]| F (s, ¥(s) + (s, y(s)|ds +—— j (t, =) |1 (s, ¥(s)) +q(s. y(s))|ds

(t.-t)

I(a)

A [T gt sy + s yesplos+ Ly |

Tl (a) 70
7%1 [CRORSED Jk\y(s)\dwr( )j & -9)" 1k\y(s)\ds+(T}(“))j (T =5)k]y(s)|ds
(tz’ﬁ)
Sl
e[ DI S 170 P (R AL O I T y(s)
TT(a+l) b +1) 7 Tr(
tz_t1
T s
As t— t2, The right hand side of the above inequality

tends to zero. As a consequence of steps 1 to 3 together with
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the Arzela-Ascoli theorem. We can conclude that KT “
F :C([O'T]'R)_)C([O'T]’R) is completely continuous. It F(a+1) <1 (6)
STEP 4: Then the BVP (1.1)-(1.2) has unique solution.

A Priori bounds PROOF

Now, it remains to show that the set . . .
Transform the problem (1.1)-(1.2) in to a fixed point

£={yeC(J,R):Y =AF(Y) for some 0<A =<1} is  problem consider the operator,

bounded. F:C([O,T],R)—)C([O,T],R)
Let Y€ & Then Y = AF(y) for some 0 < A <1Thus Defined by
for each t € y we have 1 a1
o F(Y)() =5 [ t=5) [F(5.3(5) +a(s,y()]os
HOGE ﬁj -9 [f(s,y(s>)+q(s,y(s))]ds+Tr( KRR UCHMORCHONE ()
1 7 l t t
_4(?—1)y0+-z?yt. +Ta)-[° (T-s) [f(s,y(s))+a(s y(s))]ds+ [?—1) Yo+ T Vr
Thelm?pllei by [H2] that for elach\ teJ we have Clearly, the fixed point of the operator F are solution of
\F(v)(t)\émj (t=3) [N +ats, y(s))\dﬁmjo (T=9)"[f (s, y() + (s, y(s)ds +[y| the (1)-(2).we shall use the Banach contraction principle to
1 T o P.T, F has a fixed point. We shall show that F is a contraction.
FoO<+ j (t-s) dsk\y(s)\ jo (T —s)*dsk]y(s) +|ys|
Let Xx,yeC ([0 T] R) Then for each teJ we have,
<r( Iy( )| kly( )|+ ]yx| FOO-F (0| 151 [ (50 =00 s
1 T
+——[ (T-s) ‘[f (5,¥(5)) +4(s,Y(5) ]‘ds+(——l)yo+—yT
2T il O
Sup{| F (y)(t)|} SUp {| y(S)| + | Yo |} —%L‘ t—s)H‘[f (s,x(s))+q(s,x(s))]‘ds—%]}T (T —s)H‘[f (5,X(s))+a(s,x(s)) ] ds
Then for every t € [O,T] we have, {Tiflj\yu\fi\m
(), < ”y” v < Ty ats oo s [/ 751 16y <fats o) Jos
© T ,ﬁjﬂ(t—s)” (] (s.x(9))|+as. x(s))‘}dsfﬁ (r ,s)‘“Df(s,x(s))\+\q(s,x(s))\]ds
< —2Ta 77* +|yT| (77* >~ O) <ijl(tfs) dskDy(s) X©)| ]+ = (T —s)ﬁdsk[\y(s)fx(s)\]
F(C{ +1) T I(a) F( )-°
1
T, s—.T“.k ly(s)—x(s)| |+ Tk||y(s)—x(s)|
=R Where R=———7" +|y; | [ (a+1) : ] [(a+1) [ }
F(a +l) KT *
This shows that the set € is bounded. As a consequence of |y(s) X(S)|
Schaefer’s fixed point theorem. We deduce that F has a fixed F(
point which is a solution of the problem (1.1)-(1.2). T
sup{|F (y)(t) = F(x)(t) Su|O y(s) —x(s)
UNIQUENESS OF SOLUTIONS {| |} {| |}
2kT 2KT
C. STATEMENT OF BANACH FIXED POINT IF(y)-F)|, < ||y X, (S = —J
THEOREM I(a+1)
. F(y)-F(x)| < S — X
Let T be a contraction on a Banach space X. Then T has a ” (¥) ) ( )||°0 ”y ”00
unique fixed point. Cons_equentl;_/ F is a contraction. As a consequence of
Using this statement for following Uniqueness theorem Banach fixed point theorem. We deduce that F has a fixed

point, which is a solution of a problem (1.1)-(1.2)

D. UNIQUENESS SOLUTIONS OF THEOREM
EXAMPLE

Assume that,

[H1]: f :[0,T]><R—>R, q:[O,T]xR—>R both In this section we give an example to illustrate the

usefulness of our main results. Let us consider the following

are continuous function. fractional boundary value problem.
[H2]: There exists a constant k > 0 such that ma ey teg= [0,1], 1<a<2 —(7)
DY(t) = ot ] 1<ax<
‘f (s.y(s ‘ ‘q s, y(s ‘sk‘y(s)‘ (9+eY)(A+|y®))
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y(0)=0y@®)=0 —(8)
Let X,y € [0, oo) and t€J Then we have,

e | x _y|
(9+e)|1+x 1+y|

IF(t,x)-F(ty)|=

_ x=vi
(9+et)(1+ x)(1+Y)

~t

e

ey

<lx—y]
10

1
Hence the condition [H2] holds with K = 0

Hence [H2] is satisfied with T=1
Indeed
1 e
KT _ZEB(D
INa+l) TI'(a+l)
S R
50(a +1)

rw+n>%

2kT“
IN'a+1)
Which satisfied for each o € (1, 2]

Then by uniqueness theorem. The problem (7)-(8) has a
unique solutions on [0,1]

<l<=T(a+]) >%

IV. NON-NOCAL PROBLEMS

Non-local fractional differential equation:

This section concerned with a generalization of the results
presented is the previous section to nonlocal fractional
differential equations. More precisely we shall present some
existence and uniqueness results for the following nonlocal
problem

cDay(t)="f (t,y(t))+d(ty(t)) ForeachtelJ=[0,T],1<a <2

9)
y(0)=Y%-9(y) ¥(T)=¥ (10)
g: C(J , R) — Ris continuous function. Nonlocal

conditions were initiated by Byszewski [28] when he proved

the existence and uniqueness of mild and classical solutions of
nonlocal Cauchy  problems. As  remarked by

Byszewski[28,29], The nonlocal condition can be more

useful than the standard initial conditions to describe some
physical phenomena. For example, g (y) may be given by

= ey (11

Where C, Jd=1........ p,are  given  constants and
O<7z <. <rpST, to

phenomenon of small amount of gas in a transparent tube. In

describe  the  diffusion

this case, (3)a||ows the additional measurements att,,

i=1...p

Let us introduce the following set of conditions.

[H1]: f .[0,T]><R—>R,q.[O,T]><R—>R both
are continuous function.

[H2]: There exists a constant k > 0 such that

e B
[H3]: There exist a constant k™ > 0 such that,

Jg(u)|<k

[ There exist a constant K™ > 0 such that,

\<3 "

uuec([0,T],R)

<k™|u—ulFor each teTand all

A. EXISTENCE SOLUTIONS OF THEOREM

Assume that, assumptions [H1]-[H2]-[H3]-[H4]hold.
Then the BVP (9)-(10) has at least one solution on [0,T].

PROOF

We shall use Schaefer’s fixed point theorem to prove that
F has a fixed point. The proof will be given in several steps.

STEP 1

N is continuous
Let {yn} be a sequence such that,
y, = yinC([0,T];R)
Then for each te[O T]
\N(y )t - N(y)(t)\ — t s) dSDf(s Yo () + (s, Y, ()] =] f (5, y(5)) + (s, Y())[]

I (T-s) dSUf(s Yo () + (s, Yo ()] =] F (5, ¥(8)) +a(s, y(s)[ ] +]g (va) -9 (v)|

F(a)

a-1 1 T a-1
IN(y, () - N(y)(t)\<mj (t-s) ds[k\yn\—k\y\}@L(Tfs) ds[k]y,|-kly[]
+ky, -y
NG, r() ) as[ily, -y[] + r()  (T=5) as[kly, ~y]]
+K” 1y, -y
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IN(Y)(®) - N(y)(t)\

“[Ky. =[]

T

+kly, -y

sup {IN (y,)() = N(Y)(®)[} <

-y}

2kTa Sup{|y _ y|
I'(a) "

2kT ok
INGr) =N L < Ty o =Y+ Ty =3,

2kT "
NN, = 2 -,

2kT* ..
\W(w)—N(Wké[r@0+kiﬁw—yL

2kT*
'\ I(a)
IN(y.)-N(y)[, =S|y, -],

Since f and q and also g are continuous functions, then we
have,

”F(yn) — F(y)”oO —> 0as n—ow

+k™=8,k" >Oj

STEP 2

N maps bounded sets into bounded sets in C ([O,T ]; R)

Indeed, it is enough to show that for any 7" >0, there

positive  constant | such ~ that for

={yec(oT];R):|y], <7},
have ||F(y)||w <l.By
[H1] and [H2] we have for each t €[0,T |

\N(y)(t>\<mf (t=9)" £, Y(5) +als. Y(sP|ds + —

‘ [ys |

\N(y)(t)\<mj (t-9)" ds[]f(5,y(s) + (s, YN[+ ——

¥)|+2]Yo|+|yr]

exists a

gachy € B”* we

@fo (T =) f(s.y(s)) +0(s. y(s))|ds

+2]y, -9 (

o L7 sy s (s,y(s) + (s, ()]

+2|g(

F( ) ( —s)"’ldsk\y(s)\+2k*+2\y0\+\yT\

SkW@MTa
IN'a+1)
2kT“
- T(a+

SUP{IN(y)(t)I}<sup{

2KT“
- T(a+1)

1"()

F(a+1) T+ 2K +2|y,| +|yr|

|y(s)|+2k +2|Yo| +|yr|

2 o2 +2|y0|+|yT|}

sup{‘y ‘+2k*+2|y0|+|yT|}

2kT” .
INOIL < Fg 7Yl + &+ 21¥el 14
2kt ., . Lo *
< et a2yl (7= 0). (k=)
Thus,
||N (y)||0o < Where
2KT “
| = Tar 1)77 KT+ 2]y |+ |y |
STEP 3
N maps bounded sets into equicontinuous sets
ofC([0,T];R).

Let t,t,e[0,T],t,<t, Byy" be a bounded set of
C([O,T];R) as in step 2, and

Let y € Bp"
Then
INW(L) -N(Y(,)|= ‘r() [t -5 =(t, =) | (s, y(s)) + (s, ¥(s)]ds
j (-9 [ (5, () +a(s, y(s)]ds + L j (T =) [ (s, y(s)) + s, y(s))]s

T
(t tl)(y g(y)) '1)

1 t a1
mf [“) -
ol j (t,—s)*[| f (s, y(s) + (s, y(s))\]ds+

T (a) *°

IN()®) - N < ) 1}[\f(s y(s))+q(s, y(s))|]s

f -9 [|f(s. () +a(s, y()|]ds

(t -t) t,—t)
(ol +HaD + |

INODI®) - NG < - j[(t =9) = (t, =) | F (s, ¥(s)) + (s, y(s))|ds
r() “(t,—s) [ sys»\ [acs, y(s) \]d5+ (;))j;(TfS)‘”\f(s,y(S))+q(s,y(S))\ds
*7(\%\ la(y \) Sty

F(a) -9 (-9 (5, Y + (s, (s)]ds
tz _Li)

+— j (& =) (s, YO +a(s, y(sDlds + T [70=9)2 |5, () + (s, y(s))|ds

(t 51y +[g ()« HEby )
‘r( )j [t -9t~ (t,~5)"" ]k\y(s)\dwr( )[ (t,—s)" 1k‘y(s)‘dS+Tr(tﬂ)I (T =5 K| y(s)|ds
ezt ooty Gty
k e . K(t, n) .
*r(a+1)[( RS OIRE= )(z t)|y(s)|+ s T|y(s)|

(z t) \y\+ 6 tl)k*+ thl)‘yT‘

As b _)tZ The right hand side of the above inequality
tends to zero. As a consequence of steps 1 to 3 together with
the Arzela-Ascoli theorem. We can conclude that

N:C ([O*T]’ R) —C ([O’T]’ R) is completely continuous.
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STEP 4

A Priori bounds
Now, it remains to show that the set

={yeC(J,R):Y =AF(Y) ¢, some 0< A <1}

is bounded.

Let Y€ & Then Y = AF(y) for some 0 < A <1Thus
for each t € y we have
Fahe=9 1116y ats o s+
,A[%—l}‘ym—g(y)krl%‘yﬁ

The implies by [H2] that for each t € J we have
NMOGE T 91 (s y(s) + s, y(Nds

[NY®)|=

Tl'(a) [T =)= [|F (5. y(s) +a(s. y())[Jds

l"( )°
~2(3-1)(l+ \g \)wf\m

[(a)

IN(Y)(®)| < r() * e )j (T —s)““dsk|y (s)|
—i(i—lj(\yo\+k*)+/1£\yT\
|N(y)(t)| oy T .k|y(s)|+r(a+1) Tk|y(s)

. t
_/1(?— J(|y0|+k )+}t—|yT|
sup{IN(y)(®)[} < sup{r( +1)\y \*l[Ti* j(\yohk*)MTi\yT\}

[FOI. <%

Then forevery t e [O T] Wwe have,

[FI. <

TVl H Yol K+

Tasp M+l K+

<F( " +|y0|+k +|yT|(77 >0) (k*>0)

=R Where R
I'a+1)
This shows that the set € is bounded. As a consequence of
Schaefer’s fixed point theorem. We deduce that F has a fixed
point which is a solution of the problem (9)-(10).

———— 0"+ Yo |+ K |y

A. UNIQUENESS SOLUTION OF THEOREM

Assume that,
H1: F [0 T]xR—>R, q:[0,T]xR—>R
are continuous function.

both

[H2]: There exists a constant k > 0 such that
sy sy <Ky ()

2kT“

——+k™ <1 12
IfF(a+1)+ < (12)

Then the BVP (9)-(10) has unique solution.

PROOF

Transform the problem (9)-(10) in to a fixed point
problem consider the operator,

N:C([0,T],R)>C([0,T].R)
Defined by

N()(0)=——[(t=5) [ 1(s,y()+a(s. y(s))]ds

1 t
Tyl
+ﬁﬂ (T-5)" [ (s.y(9)+as, y(s))]ds+(%‘1)(yu - g(y))+%yT

Clearly, the fixed point of the operator F are solution of
the (9)-(10).we shall use the Banach contraction principle to
P.T, F has a fixed point.we shall show that F is a contraction.

Let X,y eC ([O,T], R) Then for each teJ we have,
NN (O] <Frg k-
Tk

- s)%1 ‘[ f(s,x(s))+q(s, x(s))]‘ ds

s)ai1 [ (s.y(s)+a(s y(s))]|ds

s)a,l\[f (s, y())+a(s, y(s))]\ds{TL,l)‘yo g (y)ﬁ%w

1 ot
Tkl
_ﬁﬂ (T _S)a—1 [t (s,x(s))+q(s,x(s))]‘ds_(Ti_l)‘y0 —Q(X)\—%\yT\

<- 1a) _[;(t— $)[Jf (s, y(9))|+[a(s, y(s))| s +LJ‘T

T-3) (H[\f(s, y(s)|+as, y(s))ﬂds

et a)"“:(t s)” Uf (s.x(s))|+ ‘qsx(s)} S — )j (T-9) Df(sx(s))\ la(s.x(s) ]ds

+g(y)-9(x)
<! j( k\y(s)\ds+— (T s k\y(s)\ds— j(t s)" 'k x(s)|ds
T (a)% I(a) % ( )
1 (T s) k\x(s)\ds+‘g y —g(x)‘

“ 1 “
ey T .kDy(s)—x(s)UJrr( D T .kDy(s)—x(s)HJr‘g(y)—g(x)‘

Sl‘(la)j.( dskUy(s) ><(s)[|+m (T-s)

2KT“
“T(a+

) ask[ly®) -]+ lg (¥)-9 (x)

|y(s) X(s)|+k™

kT

y—X|

sup{|N (y)(®) - N(x)(t)]} T

IN(Y)+N ], <

sup{\y(s)fx(s)\+k**\yfx\}
2

I'(a+1)
2kT - «

() (0], < 2 ]y[()]

INOY) =N, <S]y=x],
Consequently F is a contraction. As a consequence of

Banach fixed point theorem. We deduce that F has a fixed
point, which is a solution of a problem (9)-(10)

2T fy-x], +k”

y—x|,

NON-LOCAL EXAMPLE

In this section we give an example to illustrate the
usefulness of our main results. Let us consider the following
fractional boundary value problem.
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e |y()
(9+e)@+|y(®)

YO =3cy(t) yO =0 -4

Where

‘DUy(t) = tel =[0,1], 1<a<2 —(13)

O<t <t, <....... <t <lc,i=1...n are
: iy i S 4
given positive constants wit anlci < 5 set

(9+et)(1+ X)

And g(y):Z::ciy(ti).

Let X,y € [0, OO) and te J Then we have,

f(t,x)= , (t,x) € I x[0,0),

t

. __ & | x v
F&x) I:(t'y)|_(9+e‘)|1+x 1+y|
__ etx-y

(9+et)(1+x)(l+y)
e—t
ey
1
SE|X—y|

1
Hence the condition [H2] holds with K = 0

Also we have,
ORI EPICTSST

. . . o n
Hence [H2] is satisfied withK =zi=lci.We shall
check that condition (12) with T=1.

Indeed
2.1
_2KTY e 1077
I'a+1) I'a+1)
1 4
5N +1)
1
INa+1) >—
(a+1) c
2kT“

—<1<=T(a+]) >1
IN'a+1) 5

Which satisfied for each @ € (1, 2]

Then by uniqueness theorem. The problem (13)-(14) has
unigue solutions on [0, 1]

V. CONCLUSION

In this paper, | established existence and uniqueness of
solutions for a class of boundary value problem for local and
non-local fractional differential equations involving the
Caputo fractional derivative in Banach Space. These results
are obtained by using Banach fixed point theorem and
schaefer’s fixed point theorem.
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