

Page 1 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 7, July 2017

ISSN: 2394-4404

Finite State Machine Approach To Electronic Equipment Design

Kamalu, U.A.

Felix Ogbor.

University of Port Harcourt, Rivers State, Nigeria

I. INTRODUCTION

A finite-state machine (FSM) approach to electronic

design is a mathematical model approach to electronic design.

It is an approach that gives an electronic machine the

intelligence of being in that can be in exactly one of a finite

number of states at any given time. The FSM can change from

one state to another in response to some requested external

inputs; the change from one state to another is called

a transition. A FSM is defined by a list of its states, its initial

state, and the conditions for each transition. The Finite State

Machine is a theoretical mathematical model of a sequential

logic function. It has limited inputs, outputs and number of

states.

A finite state machine is one of the most popular design

patterns in embedded systems (electronic). Many applications

from simple home appliances to complex communication

systems implement event based state machines. The finite

state machine is made up of multiple states. At any point of

time, the system is in one state and an event triggers certain

actions in that state along with a possible change in state. The

event could be due to an interrupt in the system, an RTOS

signal, a timer expiry indication or an input or indication from

another module in the system.

Finite-State Machines, FSM, is a primitive, but useful

computational model approach for both hardware electronic

equipment design and certain types of software. It also

involves regular expressions, the correspondence between

non-deterministic and deterministic machines, and more on

grammars. To describe typical hardware components that are

essentially physical realizations of finite-state machines.

Finite-state machines provide a simple computational model

with many applications. Recall the definition of a Turing

machine: a finite-state controller with a movable read/write

head on an unbounded storage tape (). If we restrict the head

to move in only one direction, we have the general case of a

finite-state machine. The sequence of symbols being read can

be thought to constitute the input, while the sequence of

symbols being written could be thought to constitute the

output. We can also derive output by looking at the internal

state of the controller after the input has been read. Finite-state

machines, also called finite-state automata (singular:

automaton) or just finite automata are much more restrictive in

their capabilities than Turing machines. For example, we can

show that it is not possible for a finite-state machine to

determine whether the input consists of a prime number of

symbols. Much simpler languages, such as the sequences of

well-balanced parenthesis strings, also cannot be recognized

Abstract: In this report, a finite state machine approach to electronic design presented. A finite state machine

approach to electronics design proposed in this work has methods; the sequential logic and embedded system approaches.

The three states represent card types of the proposed machines. At a time, only one of the states will be active which,

Finite State Machine (FSM) modelling is the most crucial part in developing proposed model as this reduces the

hardware. In this paper the process of four state (card insertion, card type (state) Selection, waiting for money dispensing)

has been modelled using MEALY Machine Model. Also, a milk vending machine was used to explore the embedded

system approach which was achieved.

Keywords: MEALY, FSM, sequential, logic, circuits, deterministic, machines, non-deterministic

Page 2 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 7, July 2017

ISSN: 2394-4404

by finite-state machines. Still there are the following

applications:

 Simple forms of pattern matching (precisely the patterns

definable by "regular expressions”, as we shall see).

 Models for sequential logic circuits, of the kind on which

every present-day computer and many device controllers

is based.

 An intimate relationship with directed graphs having arcs

labeled with symbols from the input alphabet. Even

though each of these models can be depicted in a different

setting, they have a common mathematical basis. The

following diagram shows the context of finite-state

machines among other models we have studied or will

study.

Figure 1: The interrelationship of various models with respect

to computational or representational power

II. RELATED WORKS

In sequential circuit, electronic equipment design, an

effective approach to reduce power dissipation is to “turn off”

portions of the circuit, and hence reduce the switching

activities in the circuit. Two attempts have been made to

exploit such an approach. Alidina et al. (1994) proposes a

precomputation-based approach in which the output values of

a sequential circuit are precomputed so that the original circuit

can be turned off in the next clock cycle. Benini and De

Micheli (1995b) described a scheme to stop the clocking of a

finite state machine (FSM) when the machine is in a self-loop

and the outputs do not change.

 (SUE-HONG et al, 2005) In his article proposed a

technique that is also based on selectively turning off portions

of a circuit. Their approach was motivated by the observation

that, for an FSM, active transitions occur only within a subset

of states in a period of time. Therefore, synthesizing an FSM

in such a way that only the part of the circuit which computes

the state transitions and outputs will be turned on while all

other parts will be turned off, power consumption will be

reduced.

Fred, (2015) presented a finite state machine approach for

fault tolerance and implement decentralized control in

distributed systems. This paper reviews the approach and

identifies abstraction for two different failure models –

Byzantine and fail- stop are discussed.

Ana et al (2012) Proposed machines in these countries is

on the top worldwide. This is due to the modern lifestyles

which require fast food processing with high quality. They

described the designing of multi select machine using Finite

State Machine Model with Auto-Billing Features. Finite State

Machine (FSM) modelling is the most crucial part in

developing proposed model as this reduces the hardware

FSM (Finite State Machine) In a Finite State Machine the

circuit’s output is defined in a different set of states i.e. each

output is a state. A State Register to hold the state of the

machine and a next state logic to decode the next state. An

output register defines the output of the machine. In FSM

based machines the hardware gets reduced as in this the whole

algorithm can be explained in one process. Two types of State

machines are: MEALY Machine: In this machine model, the

output depends on the present state as well as on the input.

The state diagram for a Mealy machine associates an output

value with each transition edge (in contrast to the state

diagram for a Moore machine, which associates an output

value with each state).

When the input and output alphabet are both Σ, one can

also associate to a Mealy Automata an Helix (S × Σ, (x, i) →

(T(x, i), G(x, i))) .This graph has as vertices the couples of

state and letters, every nodes are of out-degree one, and the

successor of (x, i) is the next state of the automata and the

letter that the automata output when it is instate x and it reads

letter i. This graph is a union of disjoint cycles if the

automaton is bi-reversible.

The MEALY machine model is shown in figure 2.

Figure 2: MEALY Machine Model MOORE Machine

In Moore machine model the output only depends on the

present state. A Moore machine can be defined as a 6-tuple

consisting of the following:

 a finite set of states

 a start state (also called initial state) which is an element

of

 a finite set called the input alphabet

 a finite set called the output alphabet

 atransition function mapping a state and the input

alphabet to the next state

 an output function mapping each state to the output

alphabet

A Moore machine can be regarded as a restricted type

of finite-state transducer.

The MOORE machine model is shown in figure 3.

Figure 3: MOORE Machine Model

https://en.wikipedia.org/wiki/N-tuple
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Alphabet_(computer_science)
https://en.wikipedia.org/wiki/Alphabet_(computer_science)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Finite-state_transducer

Page 3 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 7, July 2017

ISSN: 2394-4404

III. METHODOLOGY

In this paper a state diagram is constructed for the

proposed Automated Teller machine which can accept three

cards that is Master, Visa and Verve. Three select (select1,

select2, select3) inputs are taken for selection of cards. Select1

is used for the selection of MasterCard.

Similarly, select2, select3 are used for Visa and Verve

respectively. A cancel input is also used when the user wants

to withdraw his request and also the money will be returned

through the return output. Return, product and change are the

outputs. Return and change vectors are seven bits wide.

Money is an in/out signal which can be updated with the total

money of your account delivered at a time. Money signal is

seven bits wide. Money count is an internal signal which can

be updated at every transition. This signal is also seven bits

wide. If the inserted money is more than the total money of

allowed daily withdrawal limit, then the request will not be

successful returned through the change output signal.

The state diagram mainly consists of three states (card

insertion, card type Selections, and waiting for the money to

come out. Initially when the reset button is pressed, the

machine will be ready for the users to insert card and select

card type, select the amount to be withdrawn. This state is the

initial state of the design. This methodology is explained using

a flow diagram shown in figure 3.

Figure 3: State diagram for the three states

The fundamental idea behind FSM design is that a large

class of electronic problems can be viewed from the

perspective of finite state machines and can therefore be

solved using methods borrowed from other disciplines,

particularly digital electronics. The type of software products

that lend themselves best to the FSM model can be

categorized as having distinct "modes" or being "control

intensive"; that is, they contain a fairly complex logic structure

that results in a relatively large number of control blocks, such

as case structures and conditional statements.

Embedded and real-time systems are good candidates, as

are multitasking executives, command interpreters, language

processors, communication drivers, device handlers--the list

goes on. And while the FSM pattern could also be appropriate

for implementing some user-oriented applications such as

accounting software or other business packages, it may not be

ideal for designing algorithmic or computational routines.

Two methods of the finite state machine approach to

electronics design are discussed here:

The finite state approach in design of electronic

embedded system: A finite state machine is one of the most

popular design patterns in embedded systems. Many

applications from simple home appliances to complex

communication systems implement event based state

machines.

The finite state machine is made up of multiple states. At

any point of time, the system is in one state and an event

triggers certain actions in that state along with a possible

change in state. The event could be due to an interrupt in the

system, an RTOS signal, a timer expiry indication or an input

or indication from another module in the system. The

embedded system method has two different approaches for

implementing state machines using C.

Figure 1 shows a sample state machine for a milk vending

machine. It has three different states:

 Idle,

 Money Inserted and

 Option Selected.

The system relies on user inputs and signals from the milk

dispensing unit. Additional events like debug timer expiry

signal could be added.

Figure 4: finite state machine approach for a milk vending

machine design

There are two common approaches for implementing an

event based finite state machine approach to electronic design

like the one above:

 Using conditional statements

 Using lookup table

Using conditional statements is an extremely simple

approach to get the implementation started. When the number

of states and events is few, this method is intuitive and

developers get a quick picture of what the state machine is

doing. However, as the number of states or events grow, the

code can easily go unwieldly. Debugging and maintenance get

difficult as the state machine runs into multiple screen pages.

It gets even more unmanageable when the handlers span

multiple files.

Apart from readability and maintenance issues, designers

also need to be aware of the overhead introduced with the

conditional statements and account for this during design

phase, especially for time critical systems.

Page 4 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 7, July 2017

ISSN: 2394-4404

TABLE BASED APPROACH

In this approach, the finite state machine is coded in a

table with one dimension as states and the other as events.

Each element in the table has the handler for the state/event

combination. The table could be implemented in C using a

two-dimensional array of function pointers

This is an elegant method to translate the state diagram to

actual implementation as the handling for every state and

event combination is encapsulated in the table. Developers get

a quick picture of the state machine and software maintenance

is also much more under control.

However, when the table is sparse, that is, there are many

invalid state/event combinations, this approach leads to a

wastage of memory. There is also a memory penalty as the

number of states and events grow. Software designers need to

accurately account for this during initial design.

OTHER CONSIDERATIONS

In addition to having handlers for every state and

updating the next state, many implementations also have logic

to clean up the state machine for the current state and initialize

for the next state during a state change. This could be achieved

by defining entry and exit functions for every state and

invoking them during a state change.

Transition tables could also be defined capturing the

special handling needed for transition from one state to

another.

Overall, there is no default implementation choice for

developing a finite state machine like the one described above.

One needs to accurately budget for the overheads introduced

and also bear in mind factors such as scalability and

readability when choosing an implementation approach.

The discrete digital system methods of finite state

machine approach to electronic design are implemented in

real-life circuits through the use of Flip Flops

In a digital circuit, an FSM may be built using

a programmable logic device, a programmable logic

controller, logic gates and flip flops or relays. More

specifically, a hardware implementation requires a register to

store state variables, a block of combinational logic that

determines the state transition, and a second block of

combinational logic that determines the output of an FSM.

One of the classic hardware implementations is the Richards

controller.

In a Moore circuit, the output is directly connected to the

state flip-flops minimizing the time delay flip-flops and

output.

Through state encoding for low power state machines

may be optimized to minimize power consumption.

IV. RESULTS AND DISCUSSION

The state diagram shown in figure 3 is a finite machine

approach to the design of automated teller machine, ATM.

The concept is to select three card types represented by 3-

states. Whenever the card is accepted, a waiting process

begins which includes counting and dispensing of money. In

another example, a milk vending machine was designed using

the finite state machine approach. The milk vending machine

has states such as idle, insert money and select option. Once

money is inserted, the vending machine releases the quantity

of milk equivalent to the money.

V. CONCLUSION

In this report, a finite state machine approach to electronic

design was studied, the FSM algorithm is such that most of the

time, only one of the states will be active which, consequently,

lead to polling system. The designed approach which can be

used for many applications and can easily enhance the number

of selections. The finite state machine was applied to design

an ATM and a milk vending machine. And the objectives of

the study were achieved.

REFERENCES

[1] Ana Monga1 , Balwinder Singh (2012) Finite State

Machine based Vending Machine Controller with Auto-

Billing Features Centre for Development of Advanced

Computing(C-DAC), Mohali, India

[2] B. Caulfield & M.O Mahony (2005) “Passenger

Requirements of a Public Transport Ticketing System”

Proceedings of the 8th International IEEE Conference on

Intelligent Transportation Systems Vienna, Austria, pp-

32-37.

[3] Bhaskar “VHDL primer” Second Edition,

[4] Biplab Roy & Biswarup Mukherjee (2010) “Design of

Coffee Vending Machine using Single Electron Devices”

Proceedings of 2010 International Symposium on

Electronic System Design. Pp 38-43.

[5] C. J Clement Singh, K Senthil Kumar, Jayanto Gope,

Suman Basu & Subir Kumar Sarkar (2007) “Single

Electron Device based Automatic Tea Vending Machine”

proceedings of International Conference on Information

and Communication Technology in Electrical Sciences

(ICTES 2007, pp 891-896.

[6] Fauziah Zainuddin, Norlin Mohd Ali, Roslina Mohd

Sidek, Awanis Romli, Nooryati Talib & Mohd. Izham

Ibrahim (2009) “Conceptual Modeling for Simulation:

Steaming frozen Food Processing in Vending Machine”

International Conference on Computer Science and

Information Technology, University Malaysia Pahang,

pp.145-149.

[7] J.Komer (2004) “Digital logic and state machine design”,

2nd ed., Oxford.

[8] M. Zhou, Q. Zhang & Z. Chen (2006), “What Can Be

Done to Automate Conceptual Simulation Modelling?”

Proceedings of the 2006 Winter Simulation Conference,

pp. 809 – 814. International Journal of VLSI design &

Communication Systems (VLSICS) Vol.3, No.2, April

2012 27

[9] M. Zhou, Y. J. Son, & Z. Chen, (2004), “Knowledge

Representation for Conceptual Simulation Modeling”

Proceedings of the 2004 Winter Simulation Conference,

pp. 450 – 458.

Page 5 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 7, July 2017

ISSN: 2394-4404

[10] Muhammad Ali Qureshi, Abdul Aziz & Hafiz Faiz

Rasool “Design and Implementation of Automatic Ticket

System using Verilog HDL” proceedings of tnternational

conference on Information Technology, pp- 707-712.

[11] P. Smith (1997) “Automatic Hot-food Vending Machine,”

Trends in Food Science & Technology October 1997,

Vol. 81, and pp. 349.

[12] Peter Minns & Ian Elliott, “FSM-based Digital Design

using Verilog HDL”, John Wiley & Sons Ltd 2008.

[13] Seyed Bahram Zahir Azami & Mohammad Tanabian

“Automatic Mobile Payment on a nonConnected Vending

Machine” proceedings of Canadian Conference on

Electrical and Computer Engineering Steve Kilts,”

Advanced FPGA Design: Architecture, Implementation,

and optimization”, Wiley-IEEE press, 2007.

[14] Xilinx Inc., Spartan 3 Data sheet: http://ww w.xilinx.com.

[15] Zhang Wen & Zhang Xin Long (2010) “Design and

Implementation of automatic vending machine Based on

the short massage payment” International Conference on

Information and Communication technology in Electrical

Sciences, Neijiang, Sichuan, China.pp.978-981. 2004, pp-

731-734.

[16] Ted Carmely (1992) Fundamentals of Finite State

Machines/Better Software Through Finite State Design

TC Systems.

