Process Validation Of Anti- Malarial Drug: Artemether (20 Mg) And Lumefantrine (120 Mg) Tablet

Dr. Vishalkumar Shashikant Modi

Aarti Vijay Panchal

SSR College of Pharmacy, Sayli road, Silvassa, U.T of Dadra Nagar Haveli

Abstract: Product quality is the primordial intention of any industries and is achieved by Process Validation. The thumb rule says "Quality should be built into the product, and testing alone cannot be relied onto ensure product quality", so to assure that the final product is of best quality Process Validation plays an integral role which is part of quality assurance program in industries. The main objective of my research is to study process validation of Artemether (20 mg) and Lumefantrine (120 mg) tablet which has anti- malarial properties. The entire study of process provides assurance that the manufacturing process (includes quality parts and materials) and the entire procedure is suitable for intended purpose and is consistently producing a product meeting the predetermined specifications and quality attributes as per specified master formula record. This review provides information of various steps involved in validation like sifting, mixing, granulation, sizing, compression, and analyses of final finished products. During process careful attention to critical process parameters is required which includes uniformity in blend, bulk density, tapped density, flow property, uniformity of content, uniformity of dosage unit, average weight, thickness, hardness, friability, disintegration time, dissolution test, and assay. A product/ process shall be considered validated when 3 consecutive commercial scale batches is meeting the acceptance criteria and then the process is said to be in a state of control and is capable of producing the product consistently.

Keywords: Artemether, Lumefantrine, Validation, Critical Process Parameter, Process Capability.

I. INTRODUCTION

The concept of Process Validation started in early 1970s associated with current good manufacturing practice (cGMP). Development of drug product starts from discovery of drug, to testing in laboratory, preclinical studies in animals, clinical trials in human, registration by the regulatory bodies and their approval. Hence to control entire processes during drug development is important because it will have a greater effect on the quality. To improve the efficacy and safety of the drug product, regulatory officials established that there was a legal basis for requiring process validation and to examine its drug product for identity, strength, quality, purity and stability before release the drug product for commercial use. The concept of validation appeared in United States in 1978 but the origin of validation in the healthcare industry is after the failure of the process in terminal sterilization in the early 1970s. FDA has the authority and responsibility to inspect and to evaluate process validation. Several reasons for validating a product or a process includes: First, By Law manufacturer are required to conform to cGMP regulations. Secondly to make a profitable business, a manufacturer should avoids the possibility of rejected or recalled batches. Third, validation helps to ensure that the product obtained is uniform, reproducible and with quality inputs.

In 2008, the definition of Process Validation by FDA "Guidelines on General Principles of Process Validation" defines process validation as "establishing documented evidence which provides a high degree of assurance that a process will consistently produce a product meeting a predetermined specifications and quality attributes. In 2011, the definition of Process Validation modified as: "A process validation is defined as the collection and evaluation of data, from the process design stage throughout production, which establishes scientific evidence that a process is capable of consistently delivering quality products"

Systematic Approach: Manufacturing Process requires Identification, measurement, evaluating, Documenting and reevaluating a series of critical steps in the manufacturing process that require control to ensure reproducible final product.

OBJECTIVES OF PROCESS VALIDATION

To understand the Process Validation Concepts based on regulatory & scientific reasons.

To learn how to determine the critical process parameters (CPP).

To learn about the Sampling Plan and Acceptance Criteria for Process Validation.

To ensure a robust product which is highly reproducible over time

II. ELEMENTS OF VALIDATION

Design Qualification (DQ): It may be considered as total building and facility specifications which are approved by the authorized persons of the client. The DQ is the first element of validation intended to specify that the equipment, system or facility is designed in accordance with the necessities of the user and Good Manufacturing Practice (GMP) guidelines.

Installation Qualification (IQ): It should refer to the empty premises. Validation of the finished, but empty premises will clearly indicate if the building, facility and the environment is capable of meeting the predetermined specifications. It is first tested to ensure that the equipment is supplied as per the design requirements/technical terms. The Engineer confirms that the equipment and components are supplied in accordance with the terms mentioned in (DQ). Installation Qualification is considered completed only when all the above said parameters are confirmed and documented as per the approved IQ protocol.

Operational Qualification (OQ): It refers to validation of equipped but non-operational premises. This is important to determine the air flow pattern in the critical areas associated with the processing equipment, lighting and sound levels should also be carried out.

Performance Qualification (PQ): It refers to validation of the operational premises. It is the final stage of qualification, which shows, how the equipment/system will perform when tested under simulated or actual production conditions also the total environmental quality which influence factors present.

Figure 4: Stages of Process Validation

ADVANTAGES OF PROCESS VALIDATION

- ✓ Increase in product output
- ✓ Decrease in rejection and reworks
- ✓ Decrease in service costs
- ✓ Prevention of capital expenses
- ✓ Few complaints about process related failures
- ✓ Reduced inspection of in process and finished goods
- ✓ More abrupt and precise investigations into process nonconformities
- ✓ More abrupt and valid start-up of new equipment
- ✓ Easy to increase development work
- \checkmark Easy to maintain the equipment
- ✓ Improved efficiency and productivity of process

REASON FOR PROCESS VALIDATION

The desirable reason of performing process validation may include:

- ✓ Existing products or new product as per SUPAC changes.
- ✓ Change in place of manufacturing.
- \checkmark Change in batch size.
- ✓ Change in equipment/ Instruments.
- ✓ Change in raw material, packaging material.
- ✓ Change in composition or components.
- \checkmark Change in the critical control parameters.
- ✓ Change in vendor of API or excipient.
- ✓ Change in standards on input material.
- ✓ Abnormality in quality parameters of product through review during Annual Product Review (APR).
- Aim of Out of Specification (OOS) or Out of Trend (OOT) in consecutive batches.

III. DR. CHAO: FOUR KEYS

- ✓ Definition desirable attributes & undesired
- ✓ Establishment of limitations or constraints for attributes
- ✓ Determination of the controls or testing parameters used for measuring or testing
- ✓ Initiation of studies to establish control or boundary limits for key attributes that influence product, process, quality and performance.

Subpart	Section of CGMPs	Qualification and control documentation
A	General provisions	
В	Organization and personnel	Responsibilities of the quality con- trol unit
С	Buildings and facilities	Plant and facility installation and qualification
		Maintenance and sanitation
		Microbial and pest control
D	Equipment	Installation and qualification of equipment and cleaning methods
Е	Control of components, containers and closures	Incoming component testing proce- dures
F	Production and process controls	Process control systems, reprocess- ing control of microbial contami nation
G	Packaging and labeling controls	Depyrogenation, sterile packaging, filling and closing, expire dating
н	Holding and distribution	Warehousing and distribution pro- cedures
I	Laboratory controls	Analytical methods, testing for re- lease component testing and sta- bility testing
1	Records and reports	Computer systems and information systems
K	Return and salvaged drug products	Batch reprocessing

Figure 5: Checklist of Qualification and Control Documentation

IV. MANUFACTURING PROCESS IN BRIEF

A. RAW MATERIAL SIFTING

Mix and sift required Quantities of Artemether, Lumefantrine, MCC (B.P), maize starch (B.P) through 100# for 10 min. Sift lactose monohydrate and sodium starch glycolate through 40# using vibratory sifter.

B. BINDER SOLUTION PREPARATION

Take purified water in paste kettle. Add and dissolve in it Polysorbate 80. Take Purified water in SS tank. Disperse slowly HPMC 15 CPS. Keep dispersed aside for 60 min. Add Polysorbate 80 solution to HPMC 15 CPS under slow stirring for 15 min. take purified water in other RMG and boil. Disperse maize starch 1.140 Kg in 3L of purified water and make slurry. Add above slurry to boiling water with continuous stirring to form a smooth translucent paste. Cool paste to 40°C- 45 °C. Add additional purified water (1-5 L) and impeller and fast speed chopper. Mix the mass for about 1 min. at fast speed impeller and fast speed chopper to reach the end point.

C. DRY MIXING

Load the sifted raw materials into RMG and Mix for 10 min. at slow speed for $(50\pm2 \text{ RPM})$ with chopper off.

D. WET MIXING

Add binder solution into RMG first and then add starch paste to dry mix in RMG. Mix till proper dough like consistency mass is obtained. Continue mixing till granulation end point is reached. If required purified water can be added to achieve granulation end point.

DETERMINATION OF GRANULATION END POINT

BANANA BREAKING TEST

Precaution: Use hand gloves for this test.

Procedure: Take one handful of wet mass in the palm and press to form a lump. Open the palm and break the lump by pressing the thumb at the centre of the lump.

Observation: The lump shall break into small pieces. At the end point of granulation,

- ✓ Impeller: 29 Ampere
- ✓ Chopper: 7 Ampere

KNEADING AMPERE READING

E. DRYING

Dry the wet granules in FBD at $55-65^{\circ}$ C inlet air temperature till the loss on drying (LOD) of the granules is achieved between 0.50-1.50% (w/w) at 65° C for 5 min.

F. MILLING

Dried granules are milled in oscillating granulator using 20# sieve. Mill the retained granules on sifter through Multi mill using 1.00 mm/ 1.50 mm perforated screen.

G. PREMIXING

Milled granules are premixed for 5 min. using the bin blender.

H. LUBRICANTS SIFTING

Transfer the milled and sieved granules to octagonal blender. Sift lubricants through 40# using vibratory sifter, sift Cross Povidone, Purified Talc, Colloidal Anhydrous Silica, and Maize Starch separately and collect in a separate polybag.

I. LUBRICATION

Mixing of Cross Povidone, Colloidal Anhydrous Silica, with premixed granules for 10 min. and mixing with Purified Talc for 2 min in bin blender.

J. COMPRESSION

Compress the tablets using tablet compression machine. Compress the tablets at the average weight 105 mg \pm 3.0 % double rotary compression machine 45 station D/B tooling.

MACHINERIES

Vibratory Sifter (300-500 per hours) (Pharm Tab), Rapid Mixer Granulator (Bowmen and Archer), Binder preparation vessel (Pharma Tab), Fluid bed dryer (Bowmen and Archer), Granulator (Kanath Eng.), Octagonal blender (Macwell Pharma), Tablet Compression Machine (Samdevang), Tablet Deduster machine (Omega Pharma), Metal Detector (Technofore electronic).

UTILITIES

HVAC System (ABB), HVAC System (ABB), Compressed air System (Ingersoll-Rand), Purified water System (Christnisotec).

V. INSTRUMENTS USED FOR ANALYSIS

HPLC (Shimandzu), Weighing Balance (LCGC Radwag), Disintegration Apparatus (Electro-Lab), Disintegration Apparatus (Electro-Lab), UV Spectrophotometer (Perkin Elmer), Sieve Shaker (Elactron Pharma), Tap Density Tester (Electro-Lab), Friability Apparatus (Electro-Lab), Hardness Tester (Pharmatron), Moisture Balance (Sartorins), Vernier Caliper (Mitntoyo).

Process stages, control variables and measuring response / justifications

Following process parameters will be monitored during the manufacturing process

Stage	Step	Control Variables	Measuring Response/Justifications		
	Dry mixing	Time	Uniform distribution of active ingredients with excipients		
		Mixer speed	Proper mixer speed is required so that mixing and binding is completed in optimal mixing time		
	Wet mixing	Mixing time	Over mixing / under-mixing will greatly affect the granular composition and characteristic of the granules. Checked by Ampere reading at end point consistency of wet mass.		
	During	Inlet and outlet temperature	Control of inlet air temperature is greatly essential for drying of the granules.		
_	Drying	Drying time	Over or under drying of the granules leads to compression problem. Check by LOD of dried granules.		
	Sizing	Speed of the blade	More or less fines leads to compression problem & flow property of the granules.		
Granul ation		Mixing time	Control over mixing time and speed of mixer determines the distribution of lubricants in overall mix, which is very essential to achieve blend uniformity and trouble free compression. Check by Description, content uniformity, sieve analysis, untapped and tapped density and LOD		
C	Lubricati on	Sequence of the addition of the lubricants (Premixing, before addition of magnesium stearate, after addition of magnesium stearate)	Yield of lubricated granules.		

Table 1: Critical Control Parameter

Item code	Ingredients	Quantity/ Tablet (mg)	Quantity/Batch (Kg)	Use					
	DRY MIXING								
1ARTE02	Artemether	20	36.00	Active					
				pharmaceutical					
				ingredient					
1LUM101	Lumefantrine	120	216.00	Active					
				pharmaceutical					
				ingredient					
1STAR01	Maize starch BP	20.00	36.00	Diluent/ Binder/					
				Disintegrant					
1MICRO3	Microcrystalline	62.90	113.220	Emulsifier/Bulking					
	cellulose			agent					
			WET G	RANULATION					
1HYDR14	Hydroxyl	7.50	13.500	Lubricant/					
	Propyl Methyl			Thickening agent/					
	Cellulose 15			Viscocity enhancer					
	CPC BP								
1TWEE01	Polysorbate 80	1.00	1.800	Emulsifier					
	(Tween 80 BP)								
1STAR01	Maize starch BP	2.140	4.320	Binder					
	(paste								
	preparation)								
RE410	Purified water	q.s	q.s	Vehicle					
			BLENDING	/ LUBRICATION					
1CROSO1	Cross Povidone	10.00	18.00	Disintegrant/dissolut					
				ion enhancer					
1COLL01	Colloidal	1.20	2.160	Adsorbent/Disintegr					
	anhydrous silica			ant/Binder/anti-					
	BP			caking agent					
1TALC03	Purified Talc	3.00	5.400	Glidant					
1MAGN13	Magnesium	2.00	3.600	Glidant					
	Stearate								
1STAR01	Maize starch	4.032	5.094	Binder					

 Table 2: List of Raw Materials and their Functions

SAMPLING PLAN

During the manufacturing process of Artemether (20 mg) and Lumefantrine (120 mg) tablet various samples were collected to perform various tests.

_			Monitoring/
Process step	Equipment	Sampling plan	evaluation
Dry mixing	RMG	From total 11 locations sample quantity is taken: at least equivalent to 1-3 times the dosage unit. Average weight of single dosage unit: 250 mg Composite samples 3 gm. 4 samples from Top,3 samples from middle and 3 samples from bottom	Content of active ingredients in dry mix
			Appearance of wet mass
Wet mixing	RMG	-	Ampere reading at the end of granulation end point
Wet milling	Multi mill		Size of screen used
Drying	FBD	Collect 5 gm of sample from 3 different locations of FBD as mentioned in the sampling plan	Loss of drying Inlet and outlet temperature Total drying time
Cifting Pr	Vibratory		Size of sieve used
sizing	sifter & multi mill		Total sizing time
Lubrication	Octagonal blender	Collect approximately 3 times of unit dose sample quantity required for analysis from octagonal blender using sampling device.	Content of active ingredients in lubricated granules.
	biender	Composite sample of approximately 20g from all the 10 sampling points.	LOD/sieve analysis, bulk density, granules flow properties.
	Compression	Composite tablets for challenge study of low and high operational range	(test carried out by IPQA)
Compression	machine	3 tablets each at initial, middle and end stage of compression	Assay and dissolution rate in OC
		4 tablets each at initial, middle and end stage of compression	Thickness
		*10 tablets each at initial, middle and end stage of compression	Friability
Compression	Compression machine	4 tablets each at initial, middle and end stage of compression	Hardness
		3 tablets each at initial, middle and end stage of compression	Average weight
		#80 tablets each at initial, middle and end stage of compression	Uniformity of weight
		4 tablets each at initial, middle and end stage of compression	Disintegration test
		\$ approximately 100 tablets (composite sample)	Complete analysis in QC

Tablets 3: Sampling plan

VI. RESULTS AND DISCUSSION

BATCH-1							
Test	Acceptance criteria	Observation					
		Min	Optimum	Max			

		speed	speed	speed				
Machine	Minimum speed	15 RPM	20 RPM	25 RPM				
speed	Turret speed	15 RPM	20 RPM	25 RPM				
	Pre compression							
Commission	force	-	-	-				
force	Main							
Torce	compression	4.63 k N	6.43 k N	5.21 K N				
	force							
	Yellow colored,							
	circular,							
	uncoated, flat,							
	beveled edges							
Appearance	tablet, having	Complies	Complies	Complies				
	break line on							
	one side and							
	plain on other							
	side.							
Average	231.3 mg- 268.7	251.1 mg	250.9 mg	250.8 mg				
weight	$mg \pm 5 \%$	N: 047	N: 046	N: 047				
TT.:: 6	Within 5 0/ of	Min:247	Min: 246	Min:247				
Uniformity of	within $\pm 5\%$ of	mg Maw 252	mg Maw254	mg Maru 252				
weight	average weight	Max:252	Max:234	Max:232				
		Ing Maw0 21	Ing Maru0 22	May 0.22				
	0.10 mm 0.50	Max.9.51	Max.9.52	Max: 9.52				
Diameter	9.10 mm = 9.50 mm	Min	Min	Min: 0.34				
	11111 ± 0.2 11111	9.36 mm	9 35 mm	mm				
		Max:	Max:	Max: 2.97				
	2 80mm-3 20	2 98 mm	2 95 mm	mm				
Thickness	mm + 0.3 mm	Min:	Min:	Min [.]				
		3.04 mm	3.02 mm	3.041mm				
		Max:	Max:	Max: 55.3				
		57.0 N	54.5 N	N				
Hardness	NLT 30.0 N	Min:	Min:	Min: 65.5				
		68.5 N	63.1 N	Ν				
P 1 114	NMT 1.0 % w/w	0.01 %	NT'1	NT'1				
Friability	after 100 drops	w/w	N1I	NII				
Disintegration	NMT 15	2min 23	2min 56	2min 43				
time	minutes	sec.	sec.	sec.				
Dissolution	NLT	60% dissolve	ed in 45 min					
Content	More than 15 for	first 10 dosa	ige unit. % R	SD= NMT				
Uniformity	3%							

 Table 4: Observations and Acceptance Criteria for Hardness
 Challenge Study

Challenge Study								
Batch No.	Α	В	С					
Yield	97.75 %	96.56 %	97.64 %					
Table 5. Databased of a summary deallets								

Table 5: Batch yield of compressed tablets

MIXING

Sr · no	Sampling point	Bate	Batch 1		Batch 2		Batch 3	
		LOT A	LOT B	LOT A	LOT B	LOT A	LOT B	
1.	Top Left Back	99.0%	100.0 %	97.0%	98.3%	99.6%	100.7%	
2.	Top Left Front	101.2 %	100.9 %	98.3%	98.2%	98.1%	98.3%	
3.	Top Right Back	101.1 %	100.5 %	98.5%	98.3%	97.5%	97.3%	
4.	Top Right Front	101.4 %	99.6 %	98.3%	97.5%	97.5%	98.5%	
5.	Top Middle	101.0 %	100.9 %	96.8%	98.0%	99.4%	1000.0%	
6.	Middle Middle	101.3 %	102.3 %	98.2%	99.1%	102.7 %	102.3%	
7.	Middle Right Back	101.4 %	99.6 %	97.4%	97.4%	101.4 %	101.8%	
8.	Middle Right Front	101.6 %	100.4 %	98.1%	98.6%	96.4%	98.3%	
9.	Middle Left Back	102.0 %	101.7 %	97.5%	99.3%	100.0 %	101.0%	
10	Middle Left	101.3	101.3	97.0%	98.0%	100.8	101.5%	

	Front	%	%			%	
11	Bottom Middle	101.1 %	99.6 %	97.6%	97.6%	98.9%	100.8%
	Average	101.1 %	100.6 %	97.77 %	98.97 %	99.30 %	100.09%
	SD	1.3843 9718	1.189 58	1.328 37	1.3832 7	1.0478	1.17988
	% RSD	0.75%	0.89 %	0.62%	0.63%	1.89%	1.68%

Table 6: Results of Dry Mixing (Blend uniformity) Limit: (% Content uniformity) (by HPLC) 90.0 % - 110.0 % of label amount, RSD: NMT 5.0 %

Mean of individual test result: 97.0 % - 101.0 %.

Hence 5 min dry mixing time at slow speed (50 ± 2 RPM) with chopper off shall remain validated.

DRYING

Sr Sampling		Batch 1		Batch 2		Batch 3	
no.	location	LOT	LOT B	LOT	LOT B	LOT	LOT B
1.	Left	0.98	0.90	0.92	0.97	0.88	0.94
2.	Right	0.96	0.92	0.94	0.98	0.90	0.92
3.	Centre	0.97	0.90	0.98	0.97	0.92	0.93
4.	Front	0.98	0.92	0.99	0.96	0.98	0.92
5.	Back	0.99	0.94	0.98	0.97	0.92	0.94
6.	Composite	0.92	0.92	0.94	0.95	0.94	0.92

Table 7: Results of LOD

SIZING

Stage	Results									
	Batc	h no: Al	R6051	Batc	Batch no: AR6052			Batch no: AR6053		
	Lot-	Lot-	Lot-	Lot-	Lot-	Lot-	Lot-	Lot-	Lot-	
	I	II	III	I	II	III	I	I	III	
Wet mixing Add quantity of purified water.	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Total quantity	85.0	85.0	85.0	85.0	85.0	85.0	85.0	85.0	85.0	
of purified water added	kg	kg	kg	kg	kg	kg	kg	kg	kg	
Duration of wet mixing										
✓ Impeller slow without chopper	05 min	05 min	05 min	05 min	05 min	05 min	05 min	05 min	05 min	
✓ Impeller slow with chopper	02 min	02 min	02 min	02 min	02 min	02 min	02 min	02 min	02 min	
 ✓ Additional mixing with addition of water 	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Endpoint value (Ampere)	30°A	30°A	30°A	30°A	30°A	30°A	30°A	30°A	30°A	

LUBRICATION

Sr. No	Sampling location	Batch 1	Batch 2	Batch 3
1.	Top (Left)	98.9 %	99.7 %	99.3 %
2.	Middle (Left)	97.9 %	98.1 %	100.1 %
3.	Bottom (Left)	98.3 %	100.2 %	97.7 %
4.	Top (Rear)	98.5 %	99.9 %	98.4 %
5.	Bottom (Rear)	99.8 %	98.5 %	100.5 %
6.	Top (Front)	101.5 %	99.7 %	98.2 %

7.	Bottom (Front)	99.1 %	101.7 %	98.7 %
8.	Top (Right)	99.2 %	98.4 %	100.2 %
9.	Middle (Right)	100.8 %	100.8 %	98.4 %
10.	Bottom (Right)	98.2 %	99.9 %	98.8 %
	AVERAGE	99.22	99.69	99.03
	SD	1.16886	1.11699	0.95225
	% RSD (NMT 5.0 %)	1.17804	1.12046	0.96158

Table 8: Results of Blend Uniformity of Lubrication StageLimit: (%LC) (by HPLC) 90.0%-110.0 % of labelamount, RSD: NMT 5.0 %

Mean of individual test result: 99.0 %-105.0 %.

COMPRESSION

Run	Test to be performed		
	IPQA		
Minimum, optimum, maximum speed	Appearance, average weight, uniformity of weight, hardness, thickness, friability, diameter, DT		
QC Lab			
Optimum speed	Appearance, average weight, uniformity of weight, hardness, thickness, friability,		
Start	diameter, DT		
	(SAMPLE QUANTITY: 150)		
Middle	Appearance, average weight, uniformity of weight, hardness, thickness, friability, diameter, DT		
End	Appearance, average weight, uniformity of weight, hardness, thickness, friability, diameter, DT		
During compression test	3 Tablet (initial)+ 4 Tablet (middle)+ 3 Tablet (end) for		
	QC analysis		
For Dissolution	2 Tablet (initial)+ 2 Tablet (middle)+ 2		
	Tablet (end) during compression and send		
	for QC analysis		

Sieve Analysis		% Passed through						
		Batch 1		Batch 2		Batch 3		
Mesh 20 (42	5µ)	78.3	4 %	73	77.87 %		78.	98 %
Mesh 40 (25	0μ)	72.1	9 %	74	74.78 %		73.	86 %
Mesh 80 (18	0μ)	68.7	1 %	67	57.93 %		69.85 %	
Mesh 100 (15	50μ)	64.74	4 %	65	55.64 %		64.94 %	
<i>a</i> .		% Retained						
Sieve Analy	ysis	Batch 1		Batch 2		Bat	ch 3	
Mesh 60 (25	0μ)	27.8	1 %	27	7.96 %		28.	81 %
Mesh 100 (15	50μ)	36.50	5 %	35	5.67 %		34.26 %	
Table 9: Sieve Analysis on Composite Sample								
Bat	ch No.		Á		B		C	
P – bulk d	ensity g/n	nl (0.6	57 0.67		0.63 gm/cc		
unta	upped)		gm/cc gm/cc		n/cc	0.05 gm/cc		
Pt – bulk c	lensity g/1	nl (0.78		0.78		0.73	am/cc
tap	ped)		gm/	/cc gm/cc		0.75 gm/ce		
LOD (0.5- 1.5 % w/ w) at 65°C			0.88 % 0.81 %		0.86%			
Table 10: Bulk density and LOD								
Batch	No.	A	A B		С			
Angle of repose 26.2			28°	3° 26.00°		24.44°		
Table 11: Angle of Repose								
Batch No.					A		В	С
% Compr	t-p) ot	100 18.04		19.86	16.27			
Table 12: % Compressibility								
Test	Test Observation					Acceptance criteria		
Batch	A		В	C				
Assay	99.3 %	98	3.8 %	100.9 % 90.0		0.0-110.0 9 Jabelled at	0.0-110.0 % of the	

Dissolution	Min:	Min:	Min: 99.2	NLT 60% (Qty. of the
	98.2 %	99.8 %	%	labeled amount of
	Max:	Max:	Max:	Artemether and
	100.8 %	101.8 %	104.6 %	Lumefantrine is
				dissolved in 45 min)

 Table 13: Observations and Acceptance Criteria for in process test (QC)

Test		Acceptance criteria			Observ	ation
Dissolution of Artemeter for 60		NLT 60% dissolved in		Initial	Tablet-1 Tablet-2	98.0% 98.0%
min		60min		Middle	Tablet-3 Tablet-4	96.2% 94.4%
				End	Tablet-5 Tablet-6	98.1% 94.4%
				Minimum		94.4%
				maximum		98.1%
Dissolution 45min	for	NLT dissolved	45% in	Initial	Tablet-1 Tablet-2	72.5% 69.4%
Lumefantrine	trine 45min		Middle	Tablet-3 Tablet-4	71.4% 74.5%	
				End	Tablet-5 Tablet-6	72.2% 72.8%
				Minimum		69.4%
				Maximum		74.5%

Table 14: For initial, middle, end samples for dissolution

Test	Test Observation			Acceptance Criteria		
Batch	Α	В	С	Yellow colored,		
Appearance	Confirms	Confirms	Confirms	circular, uncoated, flat, beveled edges tablet, having break line on one side and plain on other side.		
Average weight	251.1 mg	250.9 mg	250.8 mg	$250\pm5\%$		
Uniformity of weight	Min:247 mg Max:252 mg	Min: 246 mg Max:254 mg	Min:247 mg Max:252 mg	Within ± 5 % of average weight		
Diameter	Max:9.31 mm Min: 9.36 mm	Max:9.32 mm Min: 9.35 mm	Max: 9.32 mm Min: 9.34 mm	9.5 ± 0.2 mm		
Thickness	Max: 2.98 mm Min: 3.04 mm	Max: 2.95 mm Min: 3.02 mm	Max: 2.97 mm Min: 3.07 mm	$3.0 \pm 0.3 \text{ mm}$		
Hardness	57.0 N	63.1 N	65.5 N	NLT 30 N		
Friability	0.23 %	0.22 %	0.21 %	NMT 1.0 %		
Disintegration time	1 min 50 sec.	1 min 51 sec.	1min 45 sec.	NMT 15 min		
Assay	y 99.3 % 99.8 % 100.9 %		90.0-110.0 % of the labelled amount			
Dissolution	Min: 98.2 % Max: 100.8 %	Min: 99.8 % Max: 101.8 %	Min: 99.2 % Max: 104.6 %	NLT 60% (Qty. of the labeled amount of Artemether and Lumefantrine is dissolved in 45 min)		

 Table 15: Observations and Acceptance Criteria for in process test (QC) for tablet

VII. SUMMARY

The Process Validation for the product Artemether20 mg and Lumefantrine 120 mg was performed with 3 consecutive commercial batches with batch size 30 Lac each. The protocol for Process Validation was prepared and executed. All manufacturing equipment, analytical instrument, utility supply were verified for their qualification status and was found to be qualified and satisfactory batches were manufactured as per batch manufacturing record. The environmental condition like temperature, Relative Humidity and Differential Pressure were monitored and documented. The sample was performed as per the sampling plan and all the test were performed as per the standard testing procedure and test result obtained were meeting predetermined specification limit. No deviation was observed from laid down procedure as mentioned in this protocol.

VIII. CONCLUSION

Based on the result obtained from the regrous study performed during process validation of three batches of Artemether 20 mg + Lumefantrine 120 mg tablet it is concluded that process used during manufacturing of said product is robust to produce quality product consistently and reproducibly hence process standards is validated.

ACKNOWLEDGEMENT

I MISS AARTI VIJAY PANCHAL would like to express my gratitude to my advisor DR. VISHAL S. MODI, and my PARENTS for their continuous support

I would like to acknowledge and extend my heartfelt gratitude to training in charge MR. NIRBHAY SINGH SIR for conducting this industrial training successfully.

And last but not the least, a special thanks to HEAD OF QUALITY ASSURANCE DEPATMENT MR. SOHAIL KHOJA SIR for allowing me to do industrial training in their esteemed organization.

REFERENCES

- [1] Kaur G. An Overview: The role of Process Validation in Pharmaceutical Industry. International journal of pharmacy, 2012; 3: 25-27.
- [2] Nash RA, Swarbrick JC. A Validation of pharmaceuticals processes. Encyclopaedia of Pharmaceutical Technology, 2008; 16: 206-209.
- [3] U.S. Food and Drug Administration. Guidelines on general principles of process validation; Division of Manufacturing and product quality, centre for drugs and biologics, 2012.
- [4] World health organisation. Guidelines on the validation of manufacturing processes for pharmaceutical products. Geneva, 1993.
- [5] Nash R, Wachter A. In Pharmaceutical Process Validation. Revised and Expanded, Marcel Dekker Inc., New York, Edition Third, 1993: 13-23.
- [6] FDA Guidance Update: Process Validation: General Principles and Practices, 2011; 3.
- [7] Nandhakumar L, Dharmamoorthy G, Rameshkumar S, Chandrasekaran S. An overview of pharmaceutical validation: Quality Assurance view point. International

Journal of Research in Pharmacy and Chemistry, 2011; 1: 1003-1013.

- [8] Gaganpreet K, Rana A, Rajni B. An overview: The role of pharmaceutical validation in pharmaceutical industry. International Journal of Pharmacy, 2012; 3: 25-27.
- [9] Pandit R, Rana A, Seth N, Bala R. Introduction and general overview of pharmaceutical process validation. International Research Journal of Pharmacy, 2012; 6: 60-63.
- [10] Rajput R, Wagh R, Shirole R, Shirole N. Process validation of piroxicam dispersible tablets. World Journal of Pharmaceutical Research, 2014; 4: 1037-1066.
- [11] Patel V, Rathwa R and Patel K. Studies in prospective process validation of Cimetidine 400 mg. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2011; 2: 1823-1835.
- [12] Ahir K, Singh K, Yadav S, Patel H, Poyahari C. Overview of validation and basic concepts of process validation. Scholars Academic Journal of Pharmacy, 2014, 3: 178-189.
- [13] Sharma S, Singh G. Process Validation in Pharmaceutical Industry: An Overview. Journal of Drug Delivery & Therapeutics, 2013; 4: 185-186.
- [14] Jatto E, Okhamafe A. An overview of pharmaceutical validation and process control in drug development. Tropical Journal of Pharmaceutical Research, 2002; 2: 115-122.

- [15] Verma P. A review article on pharmaceutical validation and process controls. IC journal. 2012; 7: 51-60.
- [16] Sofer G, Zabriskie D. In biopharmaceutical process validation, Marcel Dekker Informa Healthcare; New York, Edition Fourth, 2000: 11–100.
- [17] Chapman KG. History of validation in the United States, PharmaTech. Part I, 1991: 79-290.
- [18] Loftus BT. The regulatory basis for process validation. Marcel Dekker., New York, Edition Third, 1984: 1-7.
- [19] Agalloco J, Carleton F. Validation of Pharmaceutical Processes, Marcel Dekker Informa Healthcare; New York, 2008: 1-4.
- [20] Alam S. Pharmaceutical Process Validation. An Overview: Journal of Advanced Pharmacy Education & Research, 2012; 4: 185-200.
- [21] Guidelines for Process Validation of Pharmaceutical Dosage Forms. Saudi Food and Drug Authority, Kingdom of Saudi Arabia, 2010: 9-15.
- [22] Shruthi N, Gupta N, Raghunandan H, Kashyap U. USFDA Guidelines on Process Validation - A Review: International Journal of Pharm Tech Research, 2014, 4: 920-923.
- [23] Tangri P. Validation: A Critical Parameter for Quality Control of Pharmaceuticals. Journal of Drug Delivery & Therapeutics, 2012; 5: 34-40.