

Page 84 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

Universal Networking Hub For Personalized Transfer Of Data In A

Cloud Environment

Dr. N Hariharan

Professor & Dean – PG Studies ASIET, Kalady,

Affiliated to KTU Kerala, India

AkhilJyoth

Student, ECE Dept. ASIET, Kalady,

Affiliated to KTU Kerala, India

I. INTRODUCTION

We are living in the 21
st
century where the usage of the

word ―cloud‖ has become a new trend. Even MNCs are trying

to pivot towards this change in tech buzz. The second term

that’s shining in the tech world is IOT. Internet of things has a

great impact on our current society, especially when the

people are trying to get things done in an easy manner. What

we are trying to create is an affordable technology which

connects IOT with digital could. To have your cloud storage at

your home means, data security and ease of access. To access

any devices like printers and web cams remotely from

anywhere is a giant leap in IOT. Even though IOT and

personal cloud systems are one of the hottest topics in tech

world, the cost of affording a smart home fully equipped with

devices interconnected to each other is ground shaking. That’s

the same case with personal cloud systems.

Considering IOT first, Internet of things literally means

creating a network of devices which is connected to World

Wide Web in one way or the other. IOT has become one of

the most invested and looked up on market by the tech

enthusiast, mainly due to its vast possibilities and due to its

budding stage. Even though a lot of dedicated IOT devices are

coming up on markets, mainly due to rise in start-ups. All are

concentrating on independent devices which can interact with

other through a Wi-Fi connection. Even though it’s all well

and good, if we take the cost of buying a printer equipped with

Wi-Fi connectivity or a web cam it’s almost 3 times the

normal value. In such a situation how will common people

afford an IOT equipped home?

Personal cloud is a fascinating piece of technology. The

idea of storing everything in a remote location has a great

impact in modern life. We don’t need to bother about carrying

storage devices everywhere we go. That was the initiative of

cloud storage. But then the idea of creating a remotely

accessible storage location in our home itself got into trend.

Thus personal storage devices came into existence. But the

major drawback of this piece of technology is the limitation of

the manufacturer provided limited memory and high cost.

Most of us have a storage device lying around, what if we

were able to turn that into a personal data cloud for your day

to day activities. The possibilities are limitless. There will be

Abstract: An affordable technology which connects IOT with digital world. The system we are proposing will act as a

HUB which will enable us to connect and link other devices to internet. For example if you have to share the contents of a

storage device to your friends at different locations, you just have to plug in the drive to the hub. By giving specific user

access, they can access any content of your drive for collaborative development and so on. Printers and smart devices are

a common part of day to day life, so its turns out necessary at times to connect them to your PC while you are away. By

connecting your printer with hub, it will get in sync with the network. Thus the user can share or a group can use the

printer facilities from anywhere. By attaching a storage device to the HUB, it can act as a personalized cloud. By sitting at

your home it helps you to sink your data into it from anywhere on the world. By detaching the storage device, it’s off the

grid and your data is safe and secure at your hands. It can be used as a downloader box as well, no need for keeping your

PC on for hours while downloading huge files.

Index Terms: IOT, HUB, USB

Page 85 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

no need of downloading the data that has already been hosted

at once, since when you get back home the data will be on

your table top. There are situations where you are having the

need of downloading a huge file and to do that we have to

keep the pc on for like days! This can be avoided if we can use

a device to download the contents to a specific drives.

II. LITERATURE SURVEY

Dependence on the cloud systems for ease of storage has

increased vastly. But the security concerns with cloud systems

are still high and there are many cases where the fire wall was

broken and precious personal data is stolen. One of the most

secure cloud systems is that of Google’s, and they are offering

a free storage of about 15 GB. What if there was a safer yet

cheaper way to store your personal data. One that puts the

power right in your hands.

A. SERVICEABLE ADDRESSABLE MARKET (SAM)

The global Internet of Things market will grow to $1.7

trillion in 2020 from $655.8 billion in 2014, research firm IDC

says, as more devices come online and a bevy of platforms

and services grow up around them. The firm predicts that the

number of ―IoT endpoints,‖ connected devices such as cars,

refrigerators and everything in between, will grow from 10.3

billion in 2014 to more than 29.5 billion in 2020. According

to a recently released TechSci Research report, ―India

Internet of Things (IIoT) Market Opportunities and

Forecast, 2020‖, IoT market in India is projected to grow at

a CAGR more than 28% during 2015 – 2020. Growth in the

market is anticipated on account of ongoing technological

developments in IoT technology for providing better

connectivity and coverage as well as real-time monitoring &

tracking of services and systems across diverse industry

verticals to reduce operational and manpower costs.

Moreover, various government projects such as smart cities,

smart transportation, smart grids, etc., are also expected to

further propel use of IoT technology in the country over the

next five years. According to ―India Cloud Computing

Market Forecast & Opportunities, 2020‖, the market for cloud

computing services in India is projected to grow at a CAGR of

over 22% during 2015-2020.

B. PRODUCT DIFFERENTIATION

The competitive advantage is that even though different

devices are coming in the digital market which boost up the

IOT potential, the number of devices which converts / assists

the exiting devices to enable connectivity is less. By doing so

the flexibility is more, the system can adapt to the network and

the user doesn’t need to bother about the home / public

networks. By implementing this system with any storage

devices, the user can easily establish a personal cloud with less

effort. Backup power feature enable the user to an

uninterrupted networking experience either for cloud storage

purpose or for the IOT implementations.

Personal cloud market is expected to grow progressively

due to the technological advancements in this sector. Personal

cloud applications have been widely adoption among small

and medium enterprises in various industry verticals. These

enterprises demand personal cloud solutions and services to

store, sync, and share documents, files, and photos. Personal

cloud offers storage space setup in the user’s home as well as

at a data centre of the service provider and can be accessed

with the help of the internet. This helps users view and stream

these documents from internet connected devices such as

smart phones, laptops, and tablets. The rise in the demand for

solutions that can provide real-time access to employees while

keeping their documents secure is also encouraging

organizations to implement personal cloud services within

their businesses. The increase in the number of organizations

with offices in different places, having employees located at

various locations and requiring real-time access has

encouraged personal cloud service vendors to offer various

personal cloud offerings including applications, technologies,

and devices.

We estimate that by 2019 it will be more than double the

size of the Smartphone, PC, tablet, connected car, and the

wearable market combined. The IOT will result in $1.7 trillion

in value added to the global economy in 2019. This includes

hardware, software, installation costs, management services,

and economic value added from realized IOT efficiencies.

People are looking in the latest and simplest ways to get things

done. And investors are piling up on IOT sectors. The future

of this sector is surly looking bright.

III. PROPOSED MODEL

Figure 1

The system we are proposing will act as a hub which will

enable as to connect to internet and link other devices. By

connecting devices like storage discs and printers we will be

able to access them remotely from anywhere. This will be a

game changing step in the field of personal cloud and IOT.

For example if you have to share the contents of a specific

storage device to your friends at different locations, you just

have to plug in the drive and connect it to the hub. By giving

the specific users access, they can access any content of your

drive for collaborative development and so on. Printers and

smart devices are a common part of day to day life, so its turns

Page 86 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

out necessary at times to connect link them to your PC. By

connecting your printer to hub, the required drivers will be

downloaded into the device and the printer will get in sync

with the network. Thus the user can share or a group can use

the printer facilities from anywhere.

The data transfer using the internet can become slow at

times. When we are transferring data from a specific location

into the storage device connected to your hub sitting at home,

the major issue will be lag due to the effect of dependence of

data speeds in both the uploading point and download speed in

the home network. This we are avoiding by using an

intermediary cloud storage system. By using an intermediary

cloud, it can act as a cache or temporary storage. Thus

increasing the data transfer speeds at the user end. Thus the

user won’t feel any lag even if the internet speed in his/her

home is somewhat slow.

The usage of devices like printers with the hub leads to

the issue of updating and maintenance of driver software. One

of the solutions is to let the user configure the hub by pre

requesting the required drivers of specific devices which he

will be needing soon. Thus such can be transferred to that hub

using our server. If the user is planning to keep the hub 24/7

online the power interruption have affect his/her day to day

activities depending on the hub/networking. To prevent

situation like that we are using a decent powerful battery to

function as a temporary backup power even if there are

fluctuations in the line voltage of the user’s home. The

growing ubiquity of Wi-Fi networks combined with the

integration of low-cost Wi-Fi chipsets in all devices makes

Wi-Fi as the wireless technology the most used for accessing

to internet [3].

IV. NETWORK SETUP

The communication initiation will instantiate a virtual Wi-

Fi AP and distributes all policies and access certificates for an

authentication based on EAP-TLS [2].

STEP 1

Boot the Raspberry Pi without the WiFi adapter plugged

in.

STEP 2

Open a Terminal session by clicking on the LXTerminal

icon, and enter the following command into it: sudo nano

/etc/network/interfaces.

Example code:

auto lo

iface lo inet loopback

iface eth0 inet dhcp

allow-hotplug wlan0

auto wlan0

iface wlan0 inet dhcp

 wpa-ssid "ssid"

 wpa-psk "password"

The two places where we need to make a change are on

the last two lines, ssid and password. Now save the edited file

by pressing ctrl+X and Y.

V. ASSIGNING STATIC IP

To connect remotely to our Raspberry pi we need its IP

address. By default, our Raspberry Pi will have a dynamic IP

address. This means that the IP address can change at any

time, not ideal if you want to run our Raspberry Pi headless, as

you’ll need to keep checking and updating the IP address in

our system. A static IP address however will not change, it

assigns our Raspberry Pi a permanent address on our network

- so you know exactly where it is at all times. The Dynamic

Host Configuration Protocol (DHCP) provides configuration

parameters to Internet hosts. DHCP consists of two

components: a protocol for delivering host-specific

configuration parameters from a DHCP server to a host and a

mechanism for allocation of network addresses to hosts. [1]

STEP 1

Check our connection!

First up we’ll need to double check that our Raspberry Pi

is connected to our network. A great way to do this is to run

sudo ifconfig

STEP 2

Make some notes!

Before we can begin applying a static IP address to our

Raspberry Pi we’ll need to gather the necessary data from it!

We can get a lot of this from the “ifconfig” command we ran

earlier. Make a note of the following data:

Current IP Address (inet addr)

Broadcast Range (Bcast)

Subnet Mask (Mask)

With those noted down, run sudo route -n, this will give

us information from our router.

 Gateway

 Destination

STEP 3

Edit the files

Run sudo nano /etc/network/interfaces. This opens the

configuration file for the network settings in the nano text

editor.

Figure 2

Page 87 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

Depending on whether we want to set a static IP address

for a wired connection or a wireless connection eth0 = wired,

wlan0 = wireless.

Example code:

interface eth0

static ip_address=192.168.0.10/24

static routers=192.168.0.1

static domain_name_servers=192.168.0.1

interface wlan0

static ip_address=192.168.0.200/24

static routers=192.168.0.1

static domain_name_servers=192.168.0.1

interface = This defines which network interface you are

setting the configuration for.

static ip_address = This is the IP address that you want to

set our device to. (Make sure you leave the /24 at the end).

static routers = This is the IP address of our gateway

(probably the IP address or our router)

static domain_name_servers = This is the IP address of

our DNS (probably the IP address of our router). You can add

multiple IP addresses here separated with a single space.

To exit the editor, press ctrl+x.

To save our changes press the letter ―Y‖ then hit enter.

Now it is needed to be reboot, and everything should be

set.

After reboot by the command ifconfig we can check the

interfaces IP address.

Figure 3

VI. INTERFACE CONTROL WITH NETWORK

CONDITIONS

For an effective way to interface with Raspberry pi, it is

needed to be configured in such a manner that the Raspberry

pi first attempt to connect to WiFi and if that fails, create and

use an ad-hoc network as fallback.

A. STEPS FOR SETUP INTERFACE CONTROL

To start with hostapd hotspot client and dnsmasq

lightweight dns server need to be installed.

Open a Terminal session.

Update Raspbian with the latest updates by entering the

commands:

sudo apt-get update

sudo apt-get upgrade

To install hostapd enter the command:

sudo apt-get install hostapd

enter Y when prompted.

To install dnsmasq enter the command:

sudo apt-get install dnsmasq

enter Y when prompted

The installers will have set up the program so they run

when the pi is started. For this setup they only need to be

started if the home router is not found. So automatic startup

needs to be disabled. This is done with the following

commands:

sudo systemctl disable hostapd

sudo systemctl disable dnsmasq

Now the hostspot configuration file can be setup. This

contains the name of the WiFi signal you will need to connect

to (SSID) and the security password.

B. HOSTAPD CONFIGURATION

Using a text editor edit the hostapd configuration file.

This file won't exist at this stage so will be blank.

sudo nano /etc/hostapd/hostapd.conf

Enter the settings:

interface=wlan0

driver=nl80211

ssid=iHUB

hw_mode=g

channel=6

wmm_enabled=0

macaddr_acl=0

auth_algs=1

ignore_broadcast_ssid=0

wpa=2

wpa_passphrase=1234567890

wpa_key_mgmt=WPA-PSK

wpa_pairwise=TKIP

rsn_pairwise=CCMP

 The interface will be wlan0

 The SSID is the name of the WiFi signal broadcast from

the RPi, which you will connect to with our Tablet or

phones WiFi settings.

 Channel can be set between 1 and 13. If you are having

trouble connection because of to many wifi signals in our

area are using channel 6 then try another channel.

 Wpa_passphrase is the password you will need to enter

when you first connect a device to our Raspberry Pi's

hotspot. This should be at least 8 characters and a bit

more difficult to guess.

To save the config file press Ctrl & x.

Now the defaults file needs to be updated to point to

where the config file is stored.

In terminal enter the command

sudo nano /etc/default/hostapd

Change: #DAEMON_CONF="" to

DAEMON_CONF="/etc/hostapd/hostapd.conf"

And save.

Page 88 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

C. DNSMASQ CONFIGURATION

Next dnsmasq need to be configured to allow the PI to act

as a router and issue IP addresses.

sudo nano /etc/dnsmasq.conf

Go to the bottom of the file and add the following lines

#Pi3Hotspot Config

#stop DNSmasq from using resolv.conf

no-resolv

#Interface to use

interface=wlan0

bind-interfaces

dhcp-range=10.0.0.3,10.0.0.20,12h

And then save (ctrl & o) and exit (ctrl & x)

Now that hostapd and dnsmasq are configured we now

need to make some changes to the interfaces file and then add

a script that will detect if you are at home or not. Next we

need to edit the interfaces file. There will be several entries

already in the file. Look for references to Wlan0 and alter

them as below. Any reference to wpa_conf for wlan0 should

be disabled by putting a # at the start of the line.

Open the interfaces file with the command

sudo nano /etc/network/interfaces

Edit the following lines as below

auto lo wlan0

iface lo inet loopback

allow-hotplug wlan0

iface wlan0 inet manual

wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

Now save and exit (ctrl & x).

Required only if our home routers SSID and password

was listed in this file then the hotspot will probably not get

generated. You will need to put a # infront of each line

#iface wlan0 inet dhcp

#wpa-ssid "mySSID"

#wpa-psk "Router Pasword"

These details need to be in the wpa_supplicant.conf file to

work with this setup. Add our router details to the

wpa_supplicant.conf file with

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

and add the following commands to the bottom of the file.

network={

 ssid="mySSID"

 psk="Router Password"

 key_mgmt=WPA-PSK

}

If in the future you change our router connection details

with the WiFi icon by the clock then check that the changes

have been made to the wpa_supplicant.conf file and not the

/etc/network/interfaces file.

Note: Change "mySSID" to the ssid of our router and

"Router Password" to the password of our router.

D. START-UP SCRIPT

The final stage is to setup the startup-scripts using the

systemd process. If you have been updating Raspbian Jessie

and not used a recent image you may not have some wifi tools

installed. Just cheek you have iw installed with

dpkg -s iw

If it is not found then install it with

sudo apt-get install iw

This script will check what routers are available when the

RPi is started in the order of mySSID1 mySSID2 etc. The first

router found in the list will be connected to using existing

configured WiFi settings. If none of the listed SSIDs are in

range then a WiFi hotspot is created.

VII. USB INTERFACE

The USB mount Debian package automatically mounts

USB mass storage devices (typically USB pens) when they are

plugged in, and unmounts them when they are removed. The

mountpoints (/media/usb[0-7] by default), filesystem types to

consider, and mount options are configurable. When multiple

devices are plugged in, the first available mountpoint is

automatically selected. The script that does the (un)mounting

is called by the udev daemon. USBmount is intended as a

lightweight solution which is independent of a desktop

environment. [6]

A. INSTALLATION

Install usbmount with sudo apt-get install usbmount.

Install NTFS driver package ntfs-3g with sudo apt-get

install ntfs-3g.

Configure usbmount to mount specified filesystems by

opening the usbmount file with

sudo nano /etc/usbmount/usbmount.conf.

To mount desired file systems we need to edit

usbmount.conf file. In here there is a line called

FILESYSTEMS="". Only filesystems specified in this line are

mounted via usbmount, so we change it to:

FILESYSTEMS="vfat ntfs fuseblk ext2 ext3 ext4 hfsplus".

The next important line is FS_MOUNTOPTIONS="". Here

we need to specify which filesystems should be mounted and

how they should be mounted. We change it to:

FS_MOUNTOPTIONS="-fstype=ntfs-

3g,nls=utf8,umask=007,gid=46

-fstype=fuseblk,nls=utf8,umask=007,gid=46

-fstype=vfat,gid=1000,uid=1000,umask=007".

With this the filesystems vfat (fat32) ntfs-3g (NTFS), and

fuseblk (NTFS again) are mounted. [6]

VIII. HUB AS A SERVER

A server is a computer program that provides services to

other computer programs (and their users) in the same or other

computers. The computer that a server program runs in is also

frequently referred to as a server. That machine may be a

dedicated server or used for other purposes as well. Enhancing

the performance of an operational network, at both the traffic

and resource levels, are major objectives of Internet traffic

engineering. This is accomplished by addressing traffic

oriented performance requirements, while utilizing network

resources economically and reliably. Traffic oriented

performance measures include delay, delay variation, packet

loss, and throughput.[4]

Page 89 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

LAMP is an acronym that stands for Linux Apache

MySQL PHP and are components required to run a Dynamic

HTML webpage. Here we will turn our Raspberry Pi into a

personal web server. The steps to install all of the components

are discussed below. After our personal web server is

complete, we can use it to host a custom HTML or PHP

resume, or a personal landing page.

A. INSTALL APACHE HTTP SERVER

The Apache HTTP Server, colloquially called Apache, is

the world's most used web server software. Originally based

on the NCSA HTTPd server, development of Apache began in

early 1995 after work on the NCSA code stalled. Apache

played a key role in the initial growth of the World Wide Web,

quickly overtaking NCSA HTTPd as the dominant HTTP

server, and has remained most popular since April 1996. In

2009, it became the first web server software to serve more

than 100 million websites.

Apache is developed and maintained by an open

community of developers under the auspices of the Apache

Software Foundation. Most commonly used on a Unix-like

system (usually Linux), the software is available for a variety

of operating systems besides Unix, including Microsoft

Windows. Version 2.0 improved support for non-Unix, e.g.

Windows and OS/2 (and eComStation). Old versions of

Apache were ported to run on e.g. OpenVMS, and NetWare.

Released under the Apache License, Apache is free and open-

source software.

B. FEATURE OVERVIEW

Apache supports a variety of features, many implemented

as compiled modules which extend the core functionality.

These can range from server-side programming language

support to authentication schemes. Some common language

interfaces support Perl, Python, Tcl, and PHP. Popular

authentication modules include mod_access, mod_auth,

mod_digest, and mod_auth_digest, the successor to

mod_digest. A sample of other features include Secure

Sockets Layer and Transport Layer Security support

(mod_ssl), a proxy module (mod_proxy), a URL rewriting

module (mod_rewrite), custom log files (mod_log_config),

and filtering support (mod_include and mod_ext_filter).

Popular compression methods on Apache include the

external extension module, mod_gzip, implemented to help

with reduction of the size (weight) of Web pages served over

HTTP. ModSecurity is an open source intrusion detection and

prevention engine for Web applications. Apache logs can be

analyzed through a Web browser using free scripts, such as

AWStats/W3Perl or Visitors.

Virtual hosting allows one Apache installation to serve

many different Web sites. For example, one machine with one

Apache installation could simultaneously serve

www.example.com, www.example.org, test47.test-

server.example.edu, etc.

Apache features configurable error messages, DBMS-

based authentication databases, and content negotiation. It is

also supported by several graphical user interfaces (GUIs).

It supports password authentication and digital certificate

authentication. Because the source code is freely available,

anyone can adapt the server for specific needs, and there is a

large public library of Apache add-ons.

C. PERFORMANCE

Instead of implementing a single architecture, Apache

provides a variety of MultiProcessing Modules (MPMs),

which allow Apache to run in a process-based, hybrid (process

and thread) or event-hybrid mode, to better match the

demands of each particular infrastructure. This implies that the

choice of correct MPM and the correct configuration is

important. Where compromises in performance need to be

made, the design of Apache is to reduce latency and increase

throughput, relative to simply handling more requests, thus

ensuring consistent and reliable processing of requests within

reasonable time-frames.

For delivery of static pages, Apache 2.2 series was

considered significantly slower than nginx and varnish.[32] To

address this issue, the Apache developers created the Event

MPM, which mixes the use of several processes and several

threads per process in an asynchronous event-based loop.[33]

This architecture, and the way it was implemented in the

Apache 2.4 series, provides for performance equivalent or

slightly better than event-based web servers, as is cited by Jim

Jagielski and other independent sources.[34][35][36]

However, some independent, but significantly outdated,

benchmarks show that it still is half as fast as nginx.

D. INSTALLATION

Run the following command.

sudo apt-get install apache2 apache2-utils

This will install Apache 2.4, which is the web server that

responds to http (and https if you like) requests.

E. INSTALL PHP

PHP is a server-side scripting language designed

primarily for web development but also used as a general-

purpose programming language. Originally created by Rasmus

Lerdorf in 1994, the PHP reference implementation is now

produced by The PHP Development Team. PHP originally

stood for Personal Home Page, but it now stands for the

recursive acronym PHP: Hypertext Preprocessor. PHP code

may be embedded into HTML or HTML5 markup, or it can be

used in combination with various web template systems, web

content management systems and web frameworks. PHP code

is usually processed by a PHP interpreter implemented as a

module in the web server or as a Common Gateway Interface

(CGI) executable. The web server software combines the

results of the interpreted and executed PHP code, which may

be any type of data, including images, with the generated web

page. PHP code may also be executed with a command-line

interface (CLI) and can be used to implement standalone

graphical applications.

The standard PHP interpreter, powered by the Zend

Engine, is free software released under the PHP License. PHP

has been widely ported and can be deployed on most web

Page 90 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

servers on almost every operating system and platform, free of

charge.

F. INSTALLATION

The command used to install PHP and PHP libraries that

we need is: sudo apt-get install libapache2-mod-php5 php5

php-pear php5-xcache php5-mysql php5-curl php5-gd

Now we can write code foe custom web pages in PHP and

the Apache HTTP Server along with PHP will process the

code for displaying the web page contents.

IX. WEB CAM SERVER

A. INTRODUCTION

By interfacing web cam, the user will be able to see the

video that is available from the camera from anywhere in the

world. Here we are using a normal USB camera, which can be

connected to the USB port of the Raspberry pi. We are

installing a software package named ―motion‖ by editing the

code in the bash script, by editing the configuration file, we

can achieve our needs.[6]

Motion is a software motion detector, is a free, open

source CCTV software package developed for Linux. It can

monitor video signal from one or more cameras and is able to

detect if a significant part of the picture has changed saving

away video when it detects that motion is occurring. The

program is written in C and is made for Linux. Motion is a

command line-based tool whose output can be either jpeg,

netpbm files or mpeg video sequences. It is strictly command

line driven and can run as a daemon with a rather small

footprint and low CPU usage. It is operated mainly via config

files, though the end video streams can be viewed from a web

browser. It can also call to user configurable "triggers" when

certain events occur.

cURL is a command line tool for getting or sending files

using URL syntax. Since cURL uses libcurl, it supports a

range of common Internet protocols, currently including

HTTP, HTTPS, FTP, FTPS, SCP, SFTP, TFTP, LDAP, DAP,

DICT, TELNET, FILE, IMAP, POP3, SMTP and RTSP.

cURL supports HTTPS and performs SSL certificate

verification by default when a secure protocol is specified

such as HTTPS. When cURL connects to a remote server via

HTTPS, it will first obtain the remote server certificate and

check against its CA certificate store the validity of the remote

server to ensure the remote server is the one it claims to be.

Some cURL packages have bundled with CA certificate store

file. There are few options to specify CA certificate such as --

cacert and --capath. --cacert option can be used to specify the

location of the CA certificate store file. In the Windows

platform, if a CA certificate file is not specified, cURL will

look for a CA certificate file name ―curl-ca-bundle.crt‖ in the

following order:

 Directory where the cURL program is located.

 Current working directory.

 Windows system directory.

 Windows directory.

 Directories specified in the %PATH% environment

variables.

cURL will return an error message if the remote server is

using a self-signed certificate, or if the remote server certificate

is not signed by a CA listed in the CA cert file. -k or --insecure

option can be used to skip certificate verification.

Alternatively, if the remote server is trusted, the remote server

CA certificate can be added to the CA certificate store file.

A. STEPS

1. We will be using the terminal so open the terminal on

the Pi or connect to it via SSH.

2. To begin, first update the Raspberry Pi so you’re

running on the latest version.

3. sudo apt-get update

4. sudo apt-get upgrade

5. We start by removing libraries that may conflict with

the newer package. These may or may not already exist on

your copy of Raspbian.

sudo apt-get remove libavcodec-extra-56 libavformat56

libavresample2 libavutil54

6. Download and install the following packages by

inserting the following commands into the terminal.

Wget

https://github.com/ccrisan/motioneye/wiki/precompiled/ffmpe

g_3.1.1-1_armhf.deb

sudo dpkg -i ffmpeg_3.1.1-1_armhf.deb

7. Now we need to install the following packages, we will

need these as the motion software relies on them.

sudo apt-get install curl libssl-dev libcurl4-openssl-dev

libjpeg-dev libx264-142 libavcodec56 libavformat56

libmysqlclient18 libswscale3 libpq5

8. With those packages installed we can now grab the

latest version of the motion software and install it. To do this

run the following commands.

Wget https://github.com/Motion-Project/motion/releases/

download/release-4.0.1/pi_jessie_motion_4.0.1-1_armhf.deb

sudo dpkg -i pi_jessie_motion_4.0.1-1_armhf.deb

9. Now we need to make some edits to the configuration

file (motion.conf)

sudo nano /etc/motion/motion.conf

10. Find the following lines and change them to the

following.

 daemon on

 stream_localhost off

 output_pictures off

 ffmpeg_output_movies off

 Optional (Don’t include the text in brackets)

 stream_maxrate 100 (This will allow for real-time

streaming but requires more bandwidth & resources)

https://en.wikipedia.org/wiki/Jpeg

Page 91 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

 framerate 100 (This will allow for 100 frames to be

captured per second allowing for smoother video)

 width 640 (This changes the width of the image displayed)

 height 480 (This changes the height of the image

displayed)

11. Now we need to setup up the daemon, first we need to

edit the motion file.

sudo nano /etc/default/motion

12. Find the following line and change it to the following:

start_motion_daemon=yes

13. Once done simply save and exit

14. Now make sure the camera is connected and run the

following line:

sudo service motion start

15. Now you should be able to check out the Webcam

Stream at the IP address of our Pi so in your browser go to the

following address:

192.168.1.103:8081

16. If the webpage isn’t loading try restarting the service.

sudo service motion restart

X. NETWORK PRINTER

A. INTRODUCTION

CUPS consist of a print spooler and scheduler, a filter

system that converts the print data to a format that the printer

will understand, and a backend system that sends this data to

the print device. CUPS uses the Internet Printing Protocol

(IPP) as the basis for managing print jobs and queues. It also

provides the traditional command line interfaces for the

System V and Berkeley print systems, and provides support

for the Berkeley print system's Line Printer Daemon protocol

and limited support for the server message block (SMB)

protocol. System administrators can configure the device

drivers which CUPS supplies by editing text files in Adobe's

PostScript Printer Description (PPD) format. There are a

number of user interfaces for different platforms that can

configure CUPS, and it has a built-in web-based interface.

CUPS is free software, provided under the GNU General

Public License and GNU Lesser General Public License,

Version 2.[7]

Samba is a free software re-implementation of the

SMB/CIFS networking protocol, and was originally developed

by Andrew Tridgell. Samba provides file and print services for

various Microsoft Windows clients and can integrate with a

Microsoft Windows Server domain, either as a Domain

Controller (DC) or as a domain member. As of version 4, it

supports Active Directory and Microsoft Windows NT

domains.

Samba runs on most Unix, OpenVMS and Unix-like

systems, such as Linux, Solaris, AIX and the BSD variants,

including Apple's macOS Server, and macOS client (Mac OS

X 10.2 and greater). Samba is standard on nearly all

distributions of Linux and is commonly included as a basic

system service on other Unix-based operating systems as well.

Samba is released under the terms of the GNU General Public

License. The name Samba comes from SMB (Server Message

Block), the name of the standard protocol used by the

Microsoft Windows network file system. [7]

B. STEPS

 To get started we should first update the Raspberry Pi to

ensure we are running the latest software. You can do this

by entering the following commands into the terminal:

sudo apt-get update

sudo apt-get upgrade

 Once the Raspberry Pi has been updated we can now start

installing the print server software. In this case, we will be

installing CUPS, this software manages printers connected

via USB or over the network and it has the bonus of

providing a management interface that you can view over

the internet.

Install this software by typing the following command into

the terminal:

sudo apt-get install cups

 When CUPS has finished installing there is a few extra

things that we will need to do.

The first thing to do is add the pi user to the lpadmin

group. This will allow the pi user to access the administrative

functions of CUPS without needing to use the super user.

sudo usermod -a -G lpadmin pi

 There is one other thing that we will need to do to CUPS

to ensure that it runs well on the home network and that is

to make CUPS accessible across your whole network, at

the moment it will block any non-localhost traffic.

We can get it to accept all traffic by running the following

two commands:

sudo cupsctl --remote-any

sudo /etc/init.d/cups restart

 Now we should be able to access the Raspberry Pi print

server from any computer within your network. If you are

unsure on what your Raspberry Pi’s local IP Address is

then you can make use of the following command:

hostname -I

 Once you have your Raspberry Pi’s IP Address, go to the

following web address in your favorite web browser,

eg:(192.168.1.105)

http://192.168.1.105:631

Page 92 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

C. SETTING UP SAMBA FOR THE PI PRINT SERVER

If you intend on using your print server with Windows,

then setting up SAMBA correctly is necessary. We will need to

install SAMBA and make a few changes to its configuration to

ensure that it runs correctly and utilizes the CUPS print drivers.

 Now firstly, we should make sure we have SAMBA

installed, the easiest way to do this is simply run the install

command in the terminal. We can do that by entering the

following command in the terminal:

sudo apt-get install samba

 With SAMBA now installed to our Raspberry Pi, we will

need to open its configuration file and make several edits,

we can open the file with the following command:

sudo nano /etc/samba/smb.conf

 Now with the file open, we will need to scroll to the

bottom of the file. The quickest way to do this is to use

Ctrl+V.

Once at the bottom of the file you should add or change

the following lines. In my case the [printers] and the [print$]

sections were already in the file, so I just needed to change the

values to match the following.

CUPS printing.

[printers]

comment = All Printers

browseable = no

path = /var/spool/samba

printable = yes

guest ok = yes

read only = yes

create mask = 0700

Windows clients look for this share name as a source of

downloadable

printer drivers

[print$]

comment = Printer Drivers

path = /var/lib/samba/printers

browseable = yes

read only = no

guest ok = no

Save the file by pressing Ctrl+X and then pressing Y and

then Enter.

 We can now restart SAMBA to get it to load in our new

configuration, to do that, all we need to do is type the

following command into the terminal:

sudo /etc/init.d/samba restart

D. ADDING A PRINTER TO CUPS

 Adding a printer to CUPS is a rather simple process, but

first we need to load up the CUPS web interface. If you’re

unsure what your Raspberry Pi’s IP address is, then run the

following command in the terminal:

hostname -I

 Once you have your Raspberry Pi’s IP address, go to the

following web address in your favorite web browser,

eg:(192.168.1.105)

https://192.168.1.105:631

 You should be greeted with the following screen, on here

we need to click ―Administration‖.

 Now that we are on the administration screen, we need to

click on the ―Add Printer‖ button.

 With the ―Add Printer‖ screen now loaded, we can select

the printer we want to set up. In our case, that is the

Canon MG25000 series (Canon MG2500 series) printer.

Once selected, press the ―continue‖ button.

If your printer is not showing up on this screen, ensure

that you have plugged it into one of the USB ports on the

Raspberry Pi and that it is turned on.

You may need to restart your Raspberry Pi if it is still

refusing to show up, ensure the printer is turned on and

plugged in when you restart.

 On this screen you need to select the model of your

printer. CUPS will try and automatically detect the model

and pick the correct driver.

However, in some cases this will not function correctly,

so you will have to go through the list yourself and find the

most relevant driver. Once you are certain everything is

correct, click the ―Add Printer‖ button.

 Now this is the last screen you need to deal with before

the printer is successfully added, you can set the name

and description to whatever you want. It is handy setting

the location if you have multiple printers in your house

that you need to deal with. Also, make sure you enable

―Share This Printer‖, otherwise other computers will not

be able to access it. Once you are happy with the settings,

feel free to press ―Continue‖.

 The final screen that you will be presented with after

setting up your printer is pictured right below. This allows

you to change a few of the printer’s specific settings.

Such as the page print size, the print quality,and various

other options.

Now we will go over how to add our newly setup

Raspberry Pi print server to Windows. This should be a

relatively easy process thanks to setting up SAMBA earlier in

the tutorial.

E. ADDING A RASPBERRY PI PRINT SERVER TO

WINDOWS

 Adding a CUPS printer to Windows can be a bit of work,

mainly because you need to select the driver for Windows

to be able to connect to and understand the printer.

To get started, first go to the network page in Windows,

one of the fastest ways to get to this is to load up ―My

Computer‖ or ―This PC‖ and click on ―network‖ in the sidebar.

Once there you should have a screen that looks like the one

below with your Raspberry Pi’s hostname there, in my case it

is RASPBERRYPI.

Page 93 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

Double click on your Raspberry Pi’s share, it may ask for

a username and password. If just pressing enter doesn’t work,

try entering pi as the username.

 You should now be greeted with a screen displaying the

printers available on your Raspberry Pi print server.

Double click on the printer you want to have connected to

your computer.

 Upon double clicking this, you will likely be greeted with

the warning message below, just click the ―OK‖ button.

 Now you will need to find your printer within this list, on

the left is a list of all the brands, and on the right, is a list

of all the printers for that brand that Windows has drivers

for. If you don’t find your printer on here, then try looking

up your printer’s model online and download the

appropriate drivers for it.

In my case I had to look for the Canon MG2500 series as

shown below. Once you have selected your printer press the

―Ok‖ button.

 This will now load up a connection with your printer, if

you want to make this the default printer for the computer,

the click Printer -> Set as Default Printer.

 The printer should now be successfully added to your

computer and be available for any program to use. You

can ensure the printer is correctly set up by printing

XI. ANDROID APPLICATION

A. INTRODUCTION

Android apps are written in the Java programming

language. The Android SDK tools compile your code along

with any data and resource files into an APK, an Android

package, which is an archive file with an .apk suffix. One APK

file contains all the contents of an Android app and is the file

that Android-powered devices use to install the app.

Each Android app lives in its own security sandbox,

protected by the following Android security features:

 The Android operating system is a multi-user Linux

system in which each app is a different user.

 By default, the system assigns each app a unique Linux

user ID (the ID is used only by the system and is unknown

to the app). The system sets permissions for all the files in

an app so that only the user ID assigned to that app can

access them.

 Each process has its own virtual machine (VM), so an

app's code runs in isolation from other apps.

By default, every app runs in its own Linux process. The

Android system starts the process when any of the app's

components need to be executed, and then shuts down the

process when it's no longer needed or when the system must

recover memory for other apps.

The Android system implements the principle of least

privilege. That is, each app, by default, has access only to the

components that it requires to do its work and no more. This

creates a very secure environment in which an app cannot

access parts of the system for which it is not given permission.

However, there are ways for an app to share data with other

apps and for an app to access system services:

 It's possible to arrange for two apps to share the same

Linux user ID, in which case they are able to access each

other's files. To conserve system resources, apps with the

same user ID can also arrange to run in the same Linux

process and share the same VM. The apps must also be

signed with the same certificate.

 An app can request permission to access device data such

as the user's contacts, SMS messages, the mountable

storage (SD card), camera, and Bluetooth. The user has to

explicitly grant these permissions.

The rest of this document introduces the following

concepts:

 The core framework components that define your app.

 The manifest file in which you declare the components

and the required device features for your app.

 Resources that are separate from the app code and that

allow your app to gracefully optimize its behavior for a

variety of device configurations.

B. ACTIVITIES

An activity is the entry point for interacting with the user.

It represents a single screen with a user interface. For

example, an email app might have one activity that shows a

list of new emails, another activity to compose an email, and

another activity for reading emails. Although the activities

work together to form a cohesive user experience in the email

app, each one is independent of the others. As such, a different

app can start any one of these activities if the email app allows

it. For example, a camera app can start the activity in the email

app that composes new mail to allow the user to share a

picture. An activity facilitates the following key interactions

between system and app:

 Keeping track of what the user currently cares about

(what is on screen) to ensure that the system keeps

running the process that is hosting the activity.

 Knowing that previously used processes contain things

the user may return to (stopped activities), and thus more

highly prioritize keeping those processes around.

 Helping the app handle having its process killed so the

user can return to activities with their previous state

restored.

 Providing a way for apps to implement user flows

between each other, and for the system to coordinate these

flows. (The most classic example here being share.

E. SERVICES

A service is a general-purpose entry point for keeping an

app running in the background for all kinds of reasons. It is a

component that runs in the background to perform long-

running operations or to perform work for remote processes. A

service does not provide a user interface. For example, a

service might play music in the background while the user is

in a different app, or it might fetch data over the network

without blocking user interaction with an activity. Another

component, such as an activity, can start the service and let it

run or bind to it in order to interact with it. There are actually

two very distinct semantics services tell the system about how

to manage an app: Started services tell the system to keep

Page 94 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

them running until their work is completed. This could be to

sync some data in the background or play music even after the

user leaves the app. Syncing data in the background or playing

music also represent two different types of started services that

modify how the system handles them:

 Music playback is something the user is directly aware of,

so the app tells the system this by saying it wants to be

foreground with a notification to tell the user about it; in

this case the system knows that it should try really hard to

keep that service's process running, because the user will

be unhappy if it goes away.

 A regular background service is not something the user is

directly aware as running, so the system has more

freedom in managing its process. It may allow it to be

killed (and then restarting the service sometime later) if it

needs RAM for things that are of more immediate

concern to the user.

Bound services run because some other app (or the

system) has said that it wants to make use of the service. This

is basically the service providing an API to another process.

The system thus knows there is a dependency between these

processes, so if process A is bound to a service in process B, it

knows that it needs to keep process B (and its service) running

for A. Further, if process A is something the user cares about,

then it also knows to treat process B as something the user

also cares about. Because of their flexibility (for better or

worse), services have turned out to be a really useful building

block for all kinds of higher-level system concepts. Live

wallpapers, notification listeners, screen savers, input

methods, accessibility services, and many other core system

features are all built as services that applications implement

and the system binds to when they should be running.

A service is implemented as a subclass of Service. For

more information about the service class, see the Services

developer guide

A broadcast receiver is a component that enables the

system to deliver events to the app outside of a regular user

flow, allowing the app to respond to system-wide broadcast

announcements. Because broadcast receivers are another well-

defined entry into the app, the system can deliver broadcasts

even to apps that aren't currently running. So, for example, an

app can schedule an alarm to post a notification to tell the user

about an upcoming event... and by delivering that alarm to a

BroadcastReceiver of the app, there is no need for the app to

remain running until the alarm goes off. Many broadcasts

originate from the system—for example, a broadcast

announcing that the screen has turned off, the battery is low, or

a picture was captured. Apps can also initiate broadcasts—for

example, to let other apps know that some data has been

downloaded to the device and is available for them to use.

Although broadcast receivers don't display a user interface,

they may notification to alert the user when a broadcast event

occurs. More commonly, though, a broadcast receiver is just a

gateway to other components and is intended to do a very

minimal amount of work. For instance, it might schedule a

jobservice to perform some work based on the event with

JobScheduler.

F. CONTENT PROVIDERS

A content provider manages a shared set of app data that

you can store in the file system, in a SQLite database, on the

web, or on any other persistent storage location that your app

can access. Through the content provider, other apps can query

or modify the data if the content provider allows it. For

example, the Android system provides a content provider that

manages the user's contact information. As such, any app with

the proper permissions can query the content provider, such as

ContactsContract.Data, to read and write information about a

particular person. It is tempting to think of a content provider

as an abstraction on a database, because there is a lot of API

and support built in to them for that common case. However,

they have a different core purpose from a system-design

perspective. To the system, a content provider is an entry point

into an app for publishing named data items, identified by a

URI scheme. Thus an app can decide how it wants to map the

data it contains to a URI namespace, handing out those URIs

to other entities which can in turn use them to access the data.

There are a few particular things this allows the system to do

in managing an app:

 Assigning a URI doesn't require that the app remain

running, so URIs can persist after their owning apps have

exited. The system only needs to make sure that an

owning app is still running when it has to retrieve the

app's data from the corresponding URI.

 These URIs also provide an important fine-grained

security model. For example, an app can place the URI

for an image it has on the clipboard, but leave its content

provider locked up so that other apps cannot freely access

it. When a second app attempts to access that URI on the

clipboard,the system can allow that app to access the data

via a temporary URI permission grant so that it is allowed

to access the data only behind that URI, but nothing else

in the second app.

Content providers are also useful for reading and writing

data that is private to your app and not shared. For example,

the notepad sample app uses a content provider to save notes.

A content provider is implemented as a subclass of

contentprovider and must implement a standard set of APIs

that enable other apps to perform transactions.

A unique aspect of the Android system design is that any

app can start another app’s component. For example, if you

want the user to capture a photo with the device camera, there's

probably another app that does that and your app can use it

instead of developing an activity to capture a photo yourself.

You don't need to incorporate or even link to the code from the

camera app. Instead, you can simply start the activity in the

camera app that captures a photo. When complete, the photo is

even returned to your app so you can use it. To the user, it

seems as if the camera is actually a part of your app.

When the system starts a component, it starts the process

for that app if it's not already running and instantiates the

classes needed for the component. For example, if your app

starts the activity in the camera app that captures a photo, that

activity runs in the process that belongs to the camera app, not

in your app's process. Therefore, unlike apps on most other

systems, Android apps don't have a single entry point (there's

no main()function).

https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/app/job/JobScheduler.html
https://developer.android.com/reference/android/provider/ContactsContract.Data.html

Page 95 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

Because the system runs each app in a separate process

with file permissions that restrict access to other apps, your app

cannot directly activate a component from another app.

However, the Android system can. To activate a component in

another app, deliver a message to the system that specifies your

intent to start a particular component. The system then

activates the component for you.

Three of the four component types—activities, services,

and broadcast receivers—are activated by an asynchronous

message called an intent. Intents bind individual components to

each other at runtime. You can think of them as the messengers

that request an action from other components, whether the

component belongs to your app or another.

An intent is created with an intent object, which defines a

message to activate either a specific component (explicit intent)

or a specific type of component (implicit intent). For activities

and services, an intent defines the action to perform (for

example, to view or send something) and may specify the URI

of the data to act on, among other things that the component

being started might need to know. For example, an intent might

convey a request for an activity to show an image or to open a

web page. In some cases, you can start an activity to receive a

result, in which case the activity also returns the result in an

Intent. For example, you can issue an intent to let the user pick

a personal contact and have it returned to you. The return intent

includes a URI pointing to the chosen contact.

For broadcast receivers, the intent simply defines the

announcement being broadcast. For example, a broadcast to

indicate the device battery is low includes only a known action

string that indicates battery is low.

Unlike activities, services, and broadcast receivers, content

providers are not activated by intents. Rather, they are activated

when targeted by a request from a ContentResolver. The

content resolver handles all direct transactions with the content

provider so that the component that's performing transactions

with the provider doesn't need to and instead calls methods on

the ContentResolver object. This leaves a layer of abstraction

between the content provider and the component requesting

information (for security).

There are separate methods for activating each type of

component:

 You can start an activity or give it something new to do by

passing an Intent to startActivity() or

startActivityForResult (when you want the activity to

return a result).

 With Android 5.0 (API level 21) and later, you can use the

JobScheduler class to schedule actions. For earlier

Android versions, you can start a service (or give new

instructions to an ongoing service) by passing an Intent to

startService(). You can bind to the service by passing an

Intentto bindService().

 You can initiate a broadcast by passing an Intent to

methods such as sendBroadcast(),

sendOrderedBroadcast(), or sendStickyBroadcast().

 You can perform a query to a content provider by calling

query() on a ContentResolver.

G. THE MANIFEST FILE

Before the Android system can start an app component,

the system must know that the component exists by reading the

app's manifest file, AndroidManifest.xml. Your app must

declare all its components in this file, which must be at the root

of the app project directory.

The manifest does a number of things in addition to

declaring the app's components, such as the following:

 Identifies any user permissions the app requires, such as

Internet access or read-access to the user's contacts.

 Declares the minimum API Level required by the app,

based on which APIs the app uses.

 Declares hardware and software features used or required

by the app, such as a camera, bluetooth services, or a

multitouch screen.

 Declares API libraries the app needs to be linked against

(other than the Android framework APIs), such as the

Google Maps library.

H. LAYOUTS

A layout defines the visual structure for a user interface,

such as the UI for an activity or app widget. You can declare a

layout in two ways:

 Declare UI elements in XML. Android provides a

straightforward XML vocabulary that corresponds to the

View classes and subclasses, such as those for widgets and

layouts.

 Instantiate layout elements at runtime. Your application

can create View and ViewGroup objects (and manipulate

their properties) programmatically.

The Android framework gives you the flexibility to use

either or both of these methods for declaring and managing

your application's UI. For example, you could declare your

application's default layouts in XML, including the screen

elements that will appear in them and their properties. You

could then add code in your application that would modify the

state of the screen objects, including those declared in XML, at

run time.

The advantage to declaring your UI in XML is that it

enables you to better separate the presentation of your

application from the code that controls its behavior. Your UI

descriptions are external to your application code, which means

that you can modify or adapt it without having to modify your

source code and recompile. For example, you can create XML

layouts for different screen orientations, different device screen

sizes, and different languages. Additionally, declaring the

layout in XML makes it easier to visualize the structure of your

UI, so it's easier to debug problems. As such, this document

focuses on teaching you how to declare your layout in XML.

In general, the XML vocabulary for declaring UI elements

closely follows the structure and naming of the classes and

methods, where element names correspond to class names and

attribute names correspond to methods. In fact, the

correspondence is often so direct that you can guess what XML

attribute corresponds to a class method, or guess what class

corresponds to a given XML element. However, note that not

all vocabulary is identical. In some cases, there are slight

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/ContentResolver.html
https://developer.android.com/reference/android/content/ContentResolver.html

Page 96 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 5, May 2017

ISSN: 2394-4404

naming differences. For example, the EditText element has a

text attribute that corresponds to EditText.setText().

I. JAVA FILES

In the case of android applications, the back end is

completely on Java language. There will lot .java files

associated with all android projects. These java files are linked

to the .xml files. For example if an application that consists of a

button which will go to a particular URL on click, the actual

process running behind will be based on the code that is

included in the .java file that is linked with the .xml file of the

button. Java is a general purpose, high level programming

language, developed by Sun Microsystems. The Java

programming language was developed by a small team of

engineers, known as the Green Team, who initiated the

language in 1991. The language was originally called OAK,

and at the time it was designed for handheld devices and set-

top boxes. Oak was unsuccessful and in 1995 Sun changed the

name to Java and modified the language to take advantage of

the burgeoning World Wide Web.

In the case of this iHUB android application, mainly there

are two .java file, 2 .xml file, 1 manifest file. One .java file is

the main backend of the application, another one is the

backend of the splash. There are two layout file, one for splash

and the other one for main layout of the application. The java

code is written in such a way that when the button named

―ONLINE‖ is clicked, it will open a IP address as the URL in

the web browser, that IP adderss is the IP address provided by

the ISP. When the button named ―offline‖ is clicked, it will

open the static IP of the Raspberry pi as URL.

XII. CONCLUSION

The final product is a hub which enable us to connect to

the internet and link other devices. We can connect data

storage devices like hard disk, pen drives etc to the hub. The

hub will act as a media server which allows live streaming of

media on a device connected to the hub through Wi-Fi. It can

also act as a personal cloud. The user can access the content of

the storage device connected to the hub from anywhere in the

world. The user will be also allowed to see video signal from

the camera connected to the device from anywhere. The user

can also print documents using the printer connected to the

hub from anywhere. This flexible device works based on

multiple file sharing protocols which enables the data transfer

to be secure during accessing and requesting. With a dedicated

team we can further enhance its performance by creating a

cache server system which will boost the data transfer rate and

further increase its remote accessing capability.

REFERENCES

[1] Droms, R. (1997) Dynamic Host Configuration Protocol.

RFC 2131

[2] Creation of Virtual Wi-Fi Access Point and Secured Wi-

Fi Pairing, through NFC Oussama Stiti, Othmen

Braham, Guy Pujolle International journal of

Communications, Network and System Sciences Vol.7

No.6

[3] Wireless Broadband Alliance, Global Developments in

Public Wi-Fi, WBA Report Industry 2011

[4] D. O. Awduche, A. Chiu, A. Elwalid, I. Widjaja and X.

Xiao, ―Overview and Principles of Internet Traffic

Engineering,‖ Request for Comments (RFC) 3272, May

2002

[5] https://www.htpcguides.com/properly-mount-usb-storage-

raspberry-pi/

[6] https://usbmount.alioth.debian.org/

[7] http://www.makeuseof.com/tag/make-wireless-printer-

raspberry-pi/

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=46885
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=46885
http://www.scirp.org/journal/articles.aspx?searchCode=Oussama+Stiti&searchField=authors&page=1&SKID=0
http://www.scirp.org/journal/articles.aspx?searchCode=Othmen+Braham&searchField=authors&page=1&SKID=0
http://www.scirp.org/journal/articles.aspx?searchCode=Othmen+Braham&searchField=authors&page=1&SKID=0
http://www.scirp.org/journal/articles.aspx?searchCode=Guy+Pujolle&searchField=authors&page=1&SKID=0
http://www.scirp.org/journal/AllArticle.aspx?JournalID=4
http://www.scirp.org/journal/AllArticle.aspx?JournalID=4
http://www.scirp.org/journal/Home.aspx?IssueID=4987
http://www.scirp.org/journal/Home.aspx?IssueID=4987

