Biosensors - A Molecular Diagnostic Tool In Medicine

Mary Jacob Linda Geevarghese Mariya Mathew Jiju V Elessy Abraham

Nazareth College of Pharmacy, Thiruvalla, Pathanamthitta, Kerala

Abstract: The term biosensor is often used to cover sensor devices in order to determine the concentration of substances and other parameters of biological interest even where they do not utilize a biological system directly. This articles states that a biosensor consist of three components-a biological detection system, a transducer and an output system. This method is widely used in the fields of research and development and in the physical chemistry and in electrochemistry.

I. INTRODUCTION

BIOSENSOR

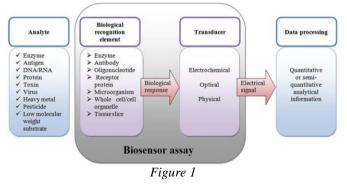
It is an analytical device which converts a biological response into an electrical signal. It detects, records and transmits information regarding a physiological change or process. It determines the presence and concentration of a specific substance in any test solution.

COMPONENTS OF BIOSENSOR

Biosensor includes three components.

- ✓ First component
- ✓ Second component
- ✓ Third component

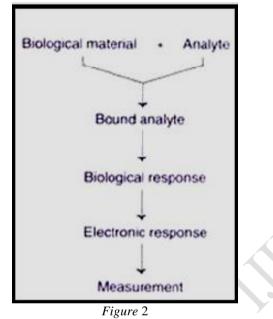
FIRST COMPONENT-BIOLOGICAL ELEMENT


Biological element interact with the target compound and detect its presence in the test solution. Therefore it is highly specific, stable under storage conditions and immobilized.

SECOND COMPONENT-TRANSDUCER

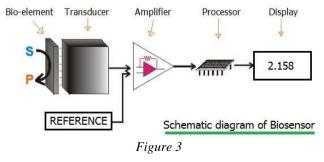
Transducer measures the physical change that occurs in the reaction and transforms it into electrical output.

THIRD COMPONENT-DETECTOR


Detector detects the signals that are passed from the transducer to the microprocessor. This data is then converted to concentration units and are transferred to a data storage device.

II. PRINCIPLE OF BIOSENSOR

Basic principle of biosensor invoived is as follows:-


- ✓ First biological recognization element which highly specific towards the biological material reacts with the analyte to form bound analyte.
- ✓ Second transducers detect and transduces signal from biological response to electrical response due to which reactions occur.
- ✓ Third detector amplifies the signals which are passed from the transducer and are displayed on the monitor for the measurement.
- The formation of bound analyte could be associated with the release of heat, gas (oxygen), electrons or hydrogen ions.

III. WORKING OF BIOSENSOR

Biosensors are operated based on the principle of signal transduction. These components include a bio-recognition element, a biotransducer and an electronic system composed of a display, processor and amplifier.

The bio-recognition element, essentially a bioreceptor, is allowed to interact with a specific analyte. The transducer measures this interaction and outputs a signal. The intensity of the signal output is proportional to the concentration of the analyte. The signal is then amplified and processed by the electronic system.

Page 309

IDEAL BIOSENSOR

An ideal biosensor should have the following characteristics:

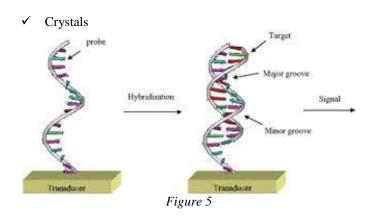
- \checkmark The output signal must be relevant to measurement environment.
- \checkmark The functional surface must be compatible with the transducer.
- ✓ High specificity and selectivity.
- ✓ Sufficient sensitivity.
- ✓ Sufficient sensitivity and resolution.
- ✓ Sufficient speed of response.
- ✓ Sufficient dynamic range.
- ✓ Sufficient accuracy and repeatability.

TYPES OF BIOSENSOR

- ✓ Based on bioreceptors.
 - Enzyme biosensor.
 - Microbial biosensor.
 - Affinity biosensor.
 - Based on transducer
 - Potentiometric
 - Amperometric
 - Conductometric
 - Optical
 - Piezoelectric.

PRINCIPLE OF DETECTION

PIEZOELECTRIC	Measures change in mass
ELECTRO-MECHANICAL	Measures change in electric distribution
OPTICAL	Measures change in light intensity
CALORIMETRIC	Measures change in heat

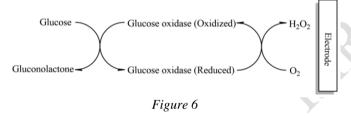

Figure 4

IV. EXAMPLES OF BIOSENSORS

A. ELECTROCHEMICAL DNA BIOSENSORS

They are used in the clinical diagnosis of genome mutation detection. Steps involved in the electrochemical DNA biosensor hybridization includes:

- ✓ Formation of the DNA recognition layer.
- ✓ Actual hybridization event.
- ✓ Transformation of the hybridization event into an electrical signal.
 - Types of Electrochemical DNA biosensors:
 - Electrodes
- ✓ Chips



B. GLUCOSE BIOSENSOR

They are used in diabetes patients for monitoring the glucose level in the blood.

The mechanism of detection is as follows:

- ✓ Glucose reacts with glucose oxidase (GOD) to form gluconic acid. Two electrons and two protons are also produced.
- ✓ Glucose mediator reacts with surrounding oxygen to form hydrogen peroxide and GOD.
- \checkmark Now this GOD reacts with more glucose.
- ✓ Higher the glucose content, higher the oxygen consumption.
- ✓ Glucose content can be detected by Platinum electrodes.

V. ADVANTAGES OF BIOSENSOR

The key benefits of biosensors include the following:

- ✓ Rapid and continuous measurement
- ✓ High specificity
- ✓ Very less usage of reagents required for calibration
- ✓ Fast response time
- ✓ Ability to measure non-polar molecules that cannot be estimated by other conventional devices.

VI. DISADVANTAGES OF BIOSENSOR

- ✓ They are expensive. Its cost of source, extraction, isolation and purification is high.
- ✓ Tend to lose activity due to deactivation relatively at short period of time.
- ✓ Response time is slower.
- ✓ Less selective.
- \checkmark No catalytic activity.

APPLICATIONS OF BIOSENSOR

- \checkmark Quality control.
- ✓ Food analysis.
- ✓ Drug development.
- ✓ Environmental field monitoring.
- ✓ Industrial Process control.
- ✓ Crime detection.
- Drug development.
 Study of biomolecules and their interactions.

REFERENCES

- Coulet, P.R. What is a biosensor?. in: L. J. Blum. P. R. Coulet (Eds) Biosensor Principles and Applications. Marcel Dekker, Inc, New York, NY:1991:1.
- [2] Best, D. Biosensors revolutionize quality control. Prepared Foods (Oct).1987:182.
- [2] Karube 1, Sang Mok Chang, M. E. Microbial biosensors.in: L. J. Blum. P. R. Coulet (Eds) Biosensor Principles and Aplications. Marcel Dekker. Inc, New York, NY1991:267.