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I. INTRODUCTION 

 

Atomistic computer simulations are an important tool to 

study complex phenomena in physics, chemistry, biology and 

materials science. With the widespread use of molecular 

mechanics simulations, multiple types of interatomic 

potentials have been developed, and they are: Pair-wise 

potentials of Lennard-Jones (1924) and Morse (1929) which 

are used in condensed matters of closed-shell atoms; 

Embedded Atom Method (EAM) potentials by Daw and 

Baskes (1983) and similar formulations which are for metals 

and alloys; Bond order potentials by Tersoff (1988) and Force 

fields by Mackerell (2004) for organic and oxide systems.  

For metals and alloys, the EAM potential is the most 

widely used approach in the research literature. Three other 

formulations are effectively similar to the EAM potential and 

they are Finnis-Sinclair potential by Finnis and Sinclair 

(1984), the glue model by Ercolessi et al (1988) and the 

effective medium theory by Jacobsen et al (1996). Classical 

molecular mechanics simulations that are based on EAM 

potentials are prolific (producing result) for example, a recent 

review by Foiles and Baskes (2012) offers a glimpse of wide 

range applications. Johnson and Oh (1989) developed an 

analytical EAM for bcc metals where the electron density was 

taken as a decreasing function of distance, the model has been 

found to be suitable for bcc metals except Cr because of its 

negative Cauchy pressure. Guellil and Adams (1992) modified 

Johnson and Oh (1989) model by introducing a modification 

term and applied the model to study phonon dispersion, 

thermal and surface properties of metals and alloys. Oyang et 
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al (1996) developed EAM for bcc transition metals including 

Cr, an analytic modified term was also introduced in order to 

fit the negative Cauchy pressure. Large-scale molecular-

dynamics (MD) and Monte-Carlo (MC) simulations of metals 

and alloys often make use of the embedded atom method 

EAM to calculate the interatomic energies and forces. In the 

standard EAM scheme, alloying effects are described in terms 

of the mixed pair interaction that has traditionally been 

adjusted to the heat of solution of a single impurity (dilute 

limit).  

The TB-SMA method takes into account the essential 

band character of a metallic bond.  The total energy of the 

system consists of a band-structure term, proportional to the 

effective width of the electronic band (and so to the square 

root of the second moment of the local density of states) and a 

repulsive pair-potential term, which incorporates the non-

band-structure parts of the total energy, including electrostatic 

interactions. The expression for the total energy contains a 

small set of adjustable parameters, which can typically been 

determined by matching to experimental data of cohesive 

energy, lattice constant, bulk modulus, and elastic constants of 

the system.  Cleri and Rosato (1993) found that the quality of 

the results is improved by including a sufficient number of 

interacting atoms (typically up to fifth neighbours). According 

to Ducastelle and Cyrot-Lackmann (1970) and Tomanek et al 

(1985), the potential can treat transition metals whose 

cohesive properties originate from the large d-band density of 

states and is based on small set of adjustable parameters and is 

suitable for extension to higher-order approximation by 

considering higher moment of the electron density of state. 

The most widely used Ta-alloys are Ta-10W and Ta-

2.5W. Ta-2.5W is often used in heat exchangers because these 

alloys can be formed easily. The ability of molybdenum to 

withstand extreme temperatures without significantly 

expanding or softening makes it useful in applications that 

involve intense heat including the manufacturer of armour, 

aircraft parts, electrical contacts, industrial motors and 

filaments. Both pure Mo and Mo-W alloy (70%/30%) are used 

for piping, stirrers and pump impellers. W-based alloys are 

used in variety of applications including light bulb filaments, 

in carbide cutting tools, as an alloying element in steels and 

superalloys in aerospace applications. 

In the present study, due to more frequent use of EAM 

potentials than the other approaches, we took EAM to first 

identify issues and obtained the EAM potential parameters for 

Ta, Mo and W bcc metals. Because TB potentials generally 

outperform pair potentials in terms of their ability to state 

properties and have properties similar to those EAM 

potentials, we also used tight-binding second moment 

approximation TB–SMA method for these metals to determine 

the TB potentials parameters which were used to determine 

the electron densities and hence the  dilute-limit heats of 

solution (unrelaxed and relaxed). 

 

 

II. THEORY 

 

A. EMBEDDED ATOM METHOD EAM 

The Embedded atom method EAM has been known to be 

one of the distinguished potentials which gains great success 

in describing the interaction of particles of metals and alloys.  

According to the scheme of embedded atom method (Daw 

and Baskes, 1984), the total energy of a system of atoms 

consisting of two terms can be written as:  
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where, 

Et is the total internal energy of the system. 

F( i ) is the energy to embed atom i into the background 

electron density i  at site i  

(rij) is the two-body (pair) potential interaction between 

atom i and atom j whose separation is given by rij 

i  is the background electron density at i due to all the 

other atoms. 

)(rf is the electron density of atom j as a function of 

distance from its centre. 

To use the Embedded atom method in a lattice model 

calculation, the ),(rf  F( ) functions must be specified for 

each atomic species, and (r) for each possible combination of 

atomic species. 
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The two-body potential is taken as Born-Mayer repulsion. 

i.e, to have the same analytic form as )(rf  
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The embedding function is given by Johnson (1988) as 
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B is the bulk modulus, G is the shear modulus and 

cv EE & are respectively mono-vacancy & cohesive energy 

of the metals used 

Oni-Ojo et al (2005) found another version of the 

embedding energy function )(F on guess work and by 

forcing )(F to satisfy certain second order ordinary 

differential equation. Later, Matthew-Ojelabi et al (2012) 

formulated an embedding energy function )(F  which 

incorporated the physics of the material in a way that 

considered the physical interaction of the slope of the 

embedding function at the equilibrium and even beyond. The 

numerical calculations performed with their version of 

)(F for fcc metals Matthew-Ojelabi et al (2013) and bcc 

metals Matthew-Ojelabi et al (2015) yielded good results at 

the early stage. 

 

B. TIGHT – BINDING SECOND MOMENT 

APPROXIMATION, TB- SMA METHOD 

 

The assumptions underlying the tight – binding model of 

metallic cohesion in the second moment approximation are 

reviewed by Cleri and Rosato (1989). 

The total cohesive energy 0U  is given as: 

BR EEU 0
                                      (11) 

In the potential, the band energy can be written for an 

atom i as: 
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where,   is an effective hoping integral, 

ijr is the distance between atom i and j 

0r  is the first neighbour distance, 
2

0

a
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The parameter q describes the distance dependence of the 

hoping integral. 

In order to ensure stability of the system, a repulsive 

pairwise interaction of Born-Mayer type is added 
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C. FUNCTION OF ALLOY SYSTEM 

 

For an alloy model, The embedding energy F(  )  of a 

guest atom (impurity) is determined by the electron density of 

the host system before the guest is added. This corollary can 

be understood as follows:  

 The unperturbed host potential is determined by its 

electron density.  

 When a guest (impurity) is introduced, the total potential 

is a sum of host and impurity potentials, so the energy of 

the host with guest is a functional of the host and impurity 

potentials. 

 Since the host electron density and the guest potential are 

set by the position and charge of the guest nucleus, the 

energy of the host with guest is a functional of the 

unperturbed host electron density and a function of the 

impurity type and position. 

For binary alloy model with a-type and b-type atoms, the 

embedding functions Fa )( and Fb )( , the atomic electron-

density functions fa )(r  and )(rfb  and the two-body 

potentials     aa )(r ,  bb )(r  and  ab )(r must be specified. 

For alloys, the only other functions needed are the pair 

cross potentials between species a and b. using the mixing rule 

as outlined by Johnson (1988), the pair cross potential 

between different species a and b can be constructed from 

their elemental potentials. 
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No mixing rule is needed for densities since the density at 

site i is simply the linear sum of density contributions of all 

the other atoms. 

 

D. THE DILUTE – LIMIT OF THE UNRELAXED HEAT 

OF SOLUTION 

 

Atom type – a is the host or solvent while atom type – b is 

the guest or solute and were calculated as summation of the 

following four terms:   

(a) remove host: 

 

   (18) 

 

(b) add guest: 
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Therefore, the heat of solution ∆H (unrelaxed) both in the 

EAM and in the TB-SMA is given as: 
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a

er is the equilibrium-nearest neighbour distance this 

perfect crystal of a-type  

The input physical quantities lattice parameter 0a , 

(lattice volume Ω), cohesive energy cE , vacancy-formation 

energy vE , elastic constants (C11, C12, C44), the bulk modulus 

B, the average shear modulus G, and the atomic electron 

density evaluated at the nearest-neighbour distance from 

quantum calculation of Ta, Mo and W are listed in Table I. 

The EAM model parameters, fe, e , α, β and γ were 

determined using equations (6-10) and these are listed in Table 

II. The tight binding model parameters A, , p and q were 

determined by fitting the experimental values of cohesive 

energy, lattice parameter, bulk modulus, elastic constants (C11, 

C12, C44) and vacancy formation energy using  equations (11-

16) and these are listed in Table III. The unrelaxed dilute-limit 

heats of solution for all the possible combinations (alloy) of 

three bcc metals Ta, Mo and W were obtained using  

equations (19-22)  and are presented in Table IV together with 

the relaxed dilute-limit heats of solution and available 

experimental data. 

 

 

III. RESULTS AND DISCUSSION 

 

The dilute-limit heats of solution we firstly determined in 

this work were unrelaxed heats of solution (2
nd

 column of 

table IV). In order to determine the relaxed heats of solutions, 

Foiles et al (1986) added another term and found that 

relaxation of the host atoms near the guest will give a decrease 

in the energy due to relaxation Er which strictly depends on 

the size mismatch and can be given by the relation 
2

1167.1
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rE  with subscripts G and H respectively 

indicating the guest and host atoms. 

We later determined the relaxed heats of solution for all 

the combinations of three bcc metals Ta, Mo and W (3
rd

 

column of table IV). For all the combinations of Ta & Mo 

[Ta(H)Mo(G) and Mo(H)Ta(G)] and Ta & W [Ta(H)W(G) 

and W(H)Ta(G)], the values for their relaxed heats of solution 

were less than their corresponding unrelaxed heats of solution 

as stated by Foiles et al (1986). But for the combination of Mo 

and W [Mo(H)W(G) and W(H)Mo(G)] systems, the values for 

both the relaxed and unrelaxed heats of solution remain the 

same. This could be as a result of their atomic size having 

almost the same value. 

The most noticeable parameters are the lattice constant 

and the cohesive energy. Without considering other 

parameters, if the lattice constant and the cohesive energy are 

equal for both the guest and the host, the heat of solution will 

be equal to zero. For the alloys of Mo and W, the heat of 

solution is almost zero in this present work while their 

experimental value of Baskes (1992) is zero. Also, positive 

and negative heats of solution significantly depend on both the 

size and the cohesive energy of the guest and the host. 

Positive heat of solution is as a result of large size of the 

guest while the cohesive energy is less than the corresponding 

quantities in the host or vice versa. This holds for Ta(H)W(G) 

alloy, here the heat of solution is positive because the size of 

W (guest atom) is less than that of Ta (host atom) and the 

cohesive energy of W is greater than that of Ta. However, 

negative heats of solution occur whenever the cohesive energy 

and the size of the guest are either both greater or less than the 

corresponding host quantities. This holds for W(H)Mo(G)  and 

Ta(H)Mo(G) alloys, the heat of solution is negative because 

Mo (guest atom) has both its size and cohesive energy less 

than that of W(host) and Ta(H). But for W(H)Ta(G), though 

the size of Ta is greater than W(G) but the cohesive energy of 

W is slightly greater than Ta. 

The variation of heat of solution as a function of pair 

cross potential is shown in figure 1. The result obtained in 

figure 1 revealed that there is agreement between the 

experimental values, unrelaxed and relaxed heats of solution 

for this present work. This seems to suggest that both EAM 

and TB-SMA are useful in the determination of heats of 

solution for alloys of bcc metals. The trend exhibited by 

different elemental alloys in figure 1 whose heats of solution 

were computed could be due to pair cross potentials, electron 

densities and potential parameters used in the computation.  

Finally, as the bulk modulus of either the guest or the host 

increases, the heat of solution also increases. However, 

increasing the shear modulus of either the guest or the host 

decreases the heat of solution. 

 

 

IV. CONCLUSION 

 

We have developed and studied three bcc metals (Ta, Mo 

and W) and their alloys using EAM and TB-SMA models 

because the frequently used potential models for molecular 

dynamics simulations of transition metals include the EAM 

and TB-SMA. Though there is no fundamental distinction 

between the two models, mathematically, the TB-SMA 

potential is equivalent to an EAM potential having a square 

root embedding function and TB-SMA model is simpler in 

formulating. We have obtained the model parameters of these 

metals, the obtained parameters were used to determine their 

electron densities and the heats of solution of their alloys were 

determined. For all the possible alloys we considered, the 

heats of solution for both unrelaxed and relaxed are almost the 

same with the experimental values. This confirms that both 

EAM and TB-SMA are very useful potentials in describing 

properties of metals and alloys. We later observed how the 

size and the cohesive energy of either the host atoms or  guest 

atoms significantly play an important role in determining 

whether the heat of solution will be zero, positive or negative. 

We have also seen how the heat of solution either increases or 

decreases with either the bulk modulus and shear modulus of 

both the host and guest. In our future studies, these models 

will be extended to study more thermodynamics properties of 

more metals and alloys. 
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Figure 1: Variation of heat of solution with pair cross 

potential  ab )(r of possible alloys of Ta, Mo and W 

Metals a0 Ec E1f C11 C12 C14 Ω B G 

Ta 3.30 8.10 2.95 1.64 0.98 0.52 17.96 2.00 0.44 

Mo 3.15 6.82 3.10 2.89 1.05 0.69 15.63 2.73 0.78 

W 3.17 8.90 3.95 3.23 1.27 0.98 15.93 3.23 0.98 

Table 1: The input physical quantities 
0a ,

cE & B are taken 

from Kittle (1979), 
vE  is taken from Zhang et al (1999) and 

C11, C12, C44 are taken form Brandes and Brooks (1992). 
0a  is 

in Å, 
cE &

vE  are in eV, while C11, C12, C44, B and G are in 

eV/Å
3
 

Metals fe,    
e   α  Β γ  

Ta 0.45 2.03 6.32 5.43 7.40 

Mo 0.43 1.71 7.50 6.37 9.26 

W 0.56 2.23 7.21 6.41 9.25 

Table 2: The EAM model parameters,  e  is in eV while fe,  α, 

β and γ are dimensionless 

Metals A    p Q ro  

Ta 0.3282 3.3010 8.2761 2.2369 2.8602 

Mo 0.2040 2.5095 10.0151 2.0510 2.7253 

W 0.2491 3.2057 10.3719 1.9920 2.7410 

Table 3: Parameters of tight-binding potentials for Ta, Mo 

and W metals, the potentials are cut off beyond the third 

neighbour distance 










03
8

r
r .  A and   are in eV while p 

and q are dimensionless. And ro is in Å. 

Possible 

alloys 

Unrelaxed 

(present 

work) 

relaxed  

(present 

work) 

Exp. Data 

Baskes (1992) 

Ta(H)Mo(G) -0.07 -0.09 -0.07 

Mo(H)Ta(G) 0.10 0.07 0.07 

Ta(H)W(G) 0.33 0.31 0.11 

W(H)Ta(G) -0.21 -0.23 -0.11 

Mo(H)W(G) 0.02 0.02 0.00 

W(H)Mo(G) -0.01 -0.01 0.00 

Table 4: The unrelaxed and relaxed dilute-limit heats of 

solution for Ta, Mo and together with the available 

experimental data. H is the host atom (solvent) and G is the 

guest atom (solute). The heats of solution are all in eV 
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