Estimation Of Fluoride Ion Concentration Levels In Drinking Water Samples Of Chickballapur Taluke By Using Ion Selective Electrode By Potentiometry (Activity Coefficient- Approach)

Sreenivasa K

Department of Chemistry SJC Institute of Technology, Chikaballapur Karnataka, India Narasimhamurthy B

Chandrasekhar K N

Department of Chemistry CMR Institute of Technology, Bangalore, Karnataka, India

Abstract: A systamatic approach and method for potentiometric estimation of dissociation constant (K_a) of hydrofluoric acid are described. This method is based on using commercial fluoride ISE (FISE) as very inexpensive, simple and reasonably fast method for determination of fluoride species. We are sugesting a usage of direct potentiometric method for determination of fluoride species and K_a of hydrofluoric acid in water solutions for 1.05 \leq pH \leq 7.05 and 1.0×10⁻¹ \leq cT(F⁻) \leq 1.0×10⁻⁶ mol L⁻¹. Found acid dissociation constant of hydrofluoric acid (pK_a = 3.00±0.02, K_a = 3.95×10⁻⁴ L mol⁻¹) and formation constant of HF2⁻ (log β = 0.400, β = 4.98 L mol⁻¹) are agreeing values.

Keywords: Fluoride, potentiometry, determination, Ion-selective electrode

I. INTRODUCTION

In this paper potentiometric method is being used for estimation of fluoride species and how potentiometric method is more convient for teaching in early stage of Water Chemistry for understanding problem of dissociation of weak acid in function of pH and analytical (total) concentration of a weak acid and species what dissociation yields too. In the most cases we give an example for dissociation of weak acid Ethylene diamine tetra acetic acid (EDTA). EDTA is very complex organic compound with hexaprotic dissociation system. In other meaning, hydrofluoric acid is inorganic compound well known to analysts through course of Inorganic Chemistry. Fluoride solutions are very interested for analysts because many fluoride species can occur depending upon of analytical fluoride concentration and pH values in drinking water at various regions.

Dissociation constant of hydrofluoric acid was determined by potentiometrically with reported values for pK_a from 2.82 to 3.33 at 26.5°C, but IUPAC suggests $pK_a = 3.004$ while books of Water Chemistry was established values of pK_a = 3.00 ± 0.02 [6-8]. Wide range of pK_a values can be explained by creating different fluoride species like HmFm, m = 1 to 2

and H_nF_{n+1} , where n = 1 to 4 and F. Searching the literature we were not able to find a recently made potentiometrically determination values for pK_a using fluoride ion-selective electrode (FISE), but there are numerous papers potentiometrically made determination values for pK_a of different weak organic acids. This fact is interesting because FISE was described in paper of Frant et al. back in 1966. FISE is one of the earliest designed ion-selective electrode beside glass or pH electrode.

For our needing we calculated pK_a = 3.00±0.02 at 26.5 °C. Calculated value is in very good agreement literature with error

of 1.49 %. Values of stability constant (β) of HF2⁻ are in wide range, but one value, $\log \beta = 0.400$ is in very good agreement with the mentioned values.

II. EXPERIMENTAL

REAGENTS AND CHEMICALS

Required solutions were prepared by dissolving certain amount of chemicals in floridated water samples

Following chemicals were used: Sodium nitrate, NaNO3, AR., Sodium fluoride, NaF, AR., Sodium acetate, CH3COONa, AR, Sodium hydroxide, NaOH, AR., Acetic acid, CH3COOH, AR., Nitric acid, HNO3, . NaF was dried at 110 $^{\circ}$ C for two hours and after cooling was used for solutions preparation.

APPARATUS

Figure 1: Potenciometric system in thermostated vessel The indicator electrode was a combined fluoride ionselective electrode. Potentiometric data were recorded at26.5±0.01 °C in thermostated polyethylene vessel with a millivoltmeter

III. RESULTS AND DISCUSSION

Potentiometric measurements have been done by using previously described FISE. FISE has been tested for response to fluoride concentration for pH values between 1.01 and 7.01.

Change of concentration of \overline{F} was performed by standard dilution method. During measurement, solution was stirred and kept at constant temperature of 25±0.01 °C. Results are shown at Figure 2.

Points on the graph represent experimental data and straight line was calculated by using method of linear regression. As it can be seen, FISE linearly follows changing of \overline{F} concentration in wide concentration range. Stable potential was reached in 1 minute. Potential change of 58.10 mV per decade of fluoride concentration change was recorded in solutions pH ranged between 2.11 and 7.01, with correlation coefficient of 0.9986, which is in good agreement with theoretical Nerstian slope for monovalent cations. For solutions with pH = 1.05, we obtained supernestian slope of 82.49 mV per decade with correlation coefficient of 0.9971 what was expected [10]. In solutions with pH = 1.1, FISE gives shorter linear response range $(2.9 \times 10^{-5} - 9.0 \times 10^{-2} \text{ mol})$ L^{-1}) than for other pH values $(1.2 \times 10^{-6} - 9.0 \times 10^{-2} \text{ mol } L^{-1})$. This effect was expected because in solutions with high H⁺ concentration, dominated specie would be HF and by dilution it would be less and less \overline{F} for reaction with active places at FISE membrane. In the other hand, it is very interesting that there is no significant difference in slope of calibration curves for pH > 2.11 in wide concentration range and we can suggest using a same calibration curve for $2.11 \le pH \le 7.01$ (Fig. 2).

Figure 3: Response of FISE in function of pH changing

Collected experimental data were drawn and by using method of linear regression we added trend lines with calculated equations for each fluoride concentration. When we extrapolate every trend line to intersect with the line on the right side of Fig. 3 for suitable concentration, pK_a values can be calculated as point what suits equations of both lines, a decreasing (on the left side Fig. 3) one and constant (on the right side Fig. 3) one. We gave an example of calculating pK_a

alue for
$$C_{\rm T}({\rm F}^{-}) = 1.0 \times 10^{-2} \text{ mol } {\rm L}^{-2}$$

 $E_1 = -43,6647 \text{pH} + 51,4851$
 $E_2 = -90$

Hence pK_a is intersection of 2 lines, that point suits both lines' equations:

 $E_1 = E_2$ - 43,6647pH + 51,4851 = -90 P^H = -90 - 51,4851 - 43,6647 pH = 3,24

v

$pH \equiv pK_a$					
Calculated pK_a values	are	given	in	Tabl	e

Calculated pK_a values are given in Table 1.									
CT(F) mol/L	pKa value Calculated values	Graphically found values							
1.0×10^{-1}	4.39	4.26							
1.0×10 ⁻²	3.14	3.12							
1.0×10 ⁻³	3.11	3.09							
1.0×10 ⁻⁴	3.22	3.25							
1.0×10 ⁻⁵	3.24	3.25							
1.0×10 ⁻⁶	3.94	3.94							
	3.24	3.25							
Standard deviation	0.02	0.02							

Table 1: Found pKa values

pKa values are obtained graphically by drawing a perpendicular line form intersection of two lines added to experimental data by method of linear regression to the abscissa axis.

From results given in Table 1 can be seen very good agreement between calculated and graphically found results and they are practically same. There are only significant difference for $CT(F-) = 1.0 \times 10^{-1} \text{ mol }/\text{L}$ and CT(F-) = 1.0×10^{-6} mol /L what can be easily explained. For all weak acids dissociation is turned to reactant's side by increasing analytical concentration what happened in our case. In the other hand, for $CT(F-) = 1.0 \times 10^{-6} \text{ mol}/\text{L}$ that concentration is on the very end or even below of linear response range and can not be taken without suspicion. We decided to ignore pKa for $CT(F-) = 1.0 \times 10^{-1} \text{ mol /L}$ and $CT(F-) = 1.0 \times 10^{-6} \text{ mol /L}$ on fact that trend lines on left sides at Fig. 3 are overlapped with ones for CT(F-) = $1.0x \ 10^{-2}$ mol /L and CT(F-) = 1.0×10^{-5} mol/ L, respectively. All other found PKa values are also in very good agreement with values, PKa = 3.19, the literature ones.

Determined pKa of hydrofluoric acid, calculated a stability constant of hydrogen difluoride ion, HF2–. HF2– is a ion created on strong hydrogen bond between H and F. HF2- is dominated specie in solutions with $C_T(F-)$.

$$HF + F^{-} \rightleftharpoons HF2^{-}$$

$$H3O^{+} + F^{-} \rightleftharpoons HF + H2O$$

$$H3O^{+} + 2F^{-} \rightleftharpoons HF2^{-} + H2O$$

With belonging stability constant, β :

$$\beta = \frac{a_{HF_2}}{a_{HF_1}a_{F_1}}$$

While we know accurate $C_{T}(F)$, we can write equation :

$$c(\vec{F}) = [\vec{H}_{2}\vec{F}] + [\vec{H}\vec{F}] + [\vec{H}_{2}\vec{F}] + [\vec{H}_{3}\vec{F}] + [\vec{H}_{4}\vec{F}] + [\vec{F}]$$

In dilute solutions, what is in our case, we can expect reasonably concentrations of only three species, HF, F^- and HF_2^- hence we are able rewrite in next form using mass balance:

$$c_T(\mathbf{F}^-) = [\mathbf{HF}] + 2[\mathbf{HF}_2^-] + [\mathbf{F}^-]$$

Results calculated by using above are given in Table 2.

Analyzed data are shown in Table 2., we can observe that results are very divaricated and pretty much different of results found in literature, $\log\beta= 0.598$. Only result what is close to literature value is $\log\beta= 0.600$, with very good agreement. This awkward situation can be explained that our solutions not contain enough F- concentration; in fact they are dilute and to acidic. By decreasing pH value and especially decreasing CT(F-), it is obliviously that dominate specie becomes HF and statistically is very hard expect that would be enough available F- to form HF2-. On the other hand for $4 \le pH \le 6$ and cT(F-) $\le 1.0 \times 10-4$ mol L-1, we have got high log β , so it can be assumed that chemical equilibrium is moved to the products and HF2- would be dominated specie, but that can not be possible.

((==))		pH									
$p\{c_T(F^-)\}$	1	2	3	4	5	6					
1	0.	3.72	3.19	2.71	3.10	3.77					
2	*	*	1.42	2.35	3.59	5.13	log <i>B</i>				
3	*	*	2.37	3.49	4.93	5.39	01-				
4	*	*	2.82	5.23	6.33	6.83					
5	*	*	*	4.85	7.13	8.12					
	T 1	1 0 0		. 11 /	, 7						

Table 2: Calculated $\log\beta$ values

We should explain this phenomena very easy if we look up to Eq.(6). High $\log\beta$ values are resulted by decreasing values of $a_{\rm H3O}$ + and $a_{\rm F}$ -, and especially that $a_{\rm F}$ - is put on second power. Most results shown in Table 2 are within range found under similar conditions. We are stressing deviation of $\log\beta$ values is common in cited literature and authors often selected one value.

Final part of our investigation was calculating specie's fraction values. This part is very important because from these results can be clearly seen what specie dominated as function of pH and concentration. Calculation was done using Eq.(1) for

HF and Eq.(2) for \overline{F} . Fraction of HF2⁻ was calculated using Eq.(3). In Table 3. are given calculated fraction values of HF, HF2⁻ and \overline{F} .

$$\alpha = \frac{[H^+]}{[H^+] + K_a} \tag{1}$$

$$\alpha = \frac{K_a}{[H^+] + K_a} \tag{2}$$

$$\alpha = \frac{a_{HF^-}}{C_T F^- \cdot \gamma} \tag{3}$$

Results are shown in Table 3& 4. confirm our assumptions earlier said about $HF2^-$ concentration in dilute fluoride solution are very low and for most cases it can be taken as zero. Same situation is for other H_nF_{n+1} complex, where n = 1 to 4 for dilute solutions because they are formed in very acidic and very concentrate fluoride solution.

pH1								
α(F ⁻)								
0.014								
0.089								
0.476								
0.899								
0.988								

Table 3: Calculated species' fraction values

pН	pH 2			pH 3			pH 4			pH 5		
	a(HF)	a(HF2)	α(F)	a(HF)	$\alpha(HF_2)$	$\alpha(\mathbf{F})$	a(HF)	a(HF2)	α(F')	a(HF)	$\alpha(HF_2)$	a (F [*])
2	0.990		0.010	0.990		0.010	0.991		0.009	0.929		0.071
3	0.936		0.064	0.929		0.071	0.921		0.079	0.573		0.427
4	0.576	8×10 ⁻⁵	0.424	0.538	9×10"	0.462	0.533	4×10 ⁻⁹	0.467	0.105		0.895
5	0.140	2×10 ⁻⁰	0.860	0.102	1×10 ⁻⁸	0.898	0.096	9×10 ⁻¹⁵	0.904	0.012	9×10 ⁻¹⁴	0.988

Table 4: Calculated species' fraction values

Figure 4: Fraction of fluoride specie in function of pH changing for $CT(F-) = 1.0 \times 10^{-1} \text{ mol /L}$

IV. RESULTS AND DISCUSSION

All the experiments were helpful for researcher and students, to understand the problem of dissociation of weak acid and forming different species in solutions. During this work we took a few assumptions, choosing a temperature of 26.5 °C for experiments, using dilute and very dilute solutions $(C_T(F-) \le 1.\times 10^{-1} \text{ mol }/L)$ and approximation of concentration of HnFn+1 complex, where n = 1 to 4 are zero for dilute solutions (this was direct consequence of using dilute solutions). Choosing to do all experiments at 26.5 °C made doing experiments simpler but we cannot be sure what situation about species' fraction would be at lower or higher temperature of 26.5 °C. On the other hand, choosing 25 °C was logically because of most analytical methods are done at 25 °C. Dilute solutions are also interest for students attend elementary grade of Analytical Chemistry because of all experimental teaching is done with dilute concentration. The last, but not less important thing was use of glass electrode for pH measurements. We cannot neglect this fact had some influence to final results. If we remember experiment had a qualitative purpose for teaching students in their very beginning, we neglected this fact, but deeply aware of.

On the other hand, using potentiometric methods as an example of simple analytical technique was an excellent choice. Results were collected by using potetiometric methods gave very accurate values of constant dissociation of hydrofluoric acid (pKa = 3.24 ± 0.03) compared with results were found (pKa = 3.19 ± 0.02) or suggested in literature (2.82 \leq pKa \leq 3.33). Situation with stability constant of HF²⁻ complex was complicated, but one value (log β = 0.400) is in very good agreement with literature ones.

From the above experimental methods we analyzed Fluoride ion concentration levels of the various regions of Rural areas of chickballpur taluk the results are correlates with the earlier results and they are below the WHO standard, these water sources are useful for drinking except few other aspects.

				Potentiometry			
SL	¥7*11	Type of	T	values F			
No	Village	Source	Location	(mg	/lit)		
				Monso	pН		
1	IADALATIM		Norovononno	OII			
1.	MANAHALLI	PWS S1	land side	1.60	7.2		
2.	JADALATIM		Chikkanarasim				
2.	MANAHALLI	PWS S2	happa land side	1.00	7.2		
3.	CHEDACHIK	MANG CO	Road side	0.00	7.2		
	KANAHALLI	MWS 52		0.00	7.3		
4.	СНОККАНА		Beside				
	LLI	PWS S1	oniyamma	0.00	7.3		
			temple				
~	SRIRAMPUR	PWS S2	Beside temple	0.00	7.3		
5.	SRIRAMPUR	HP S4	Main road side	0.00	7.5		
6.	AGALAGUR KI	PWS S2	Beside forest	0.00	7.4		
7.	AGALAGUR KI	PWS S3	Main road side	0.00	7.1		
	AGALAGUR		Beside				
	KI	HP S7	aganavadi	0.00	7.4		
0	CHIKKAKAD		school Basida				
а.	ICANAHALI	DWC	kelemme	0.50	7.2		
	IUANAHALL	FWS	temple	0.50	1.2		
9	KATTARIGU		Inside tank				
	PPE	PWS S1	bund	0.00	7.4		
10.	KATTARIGU PPE	PWS S2	Kesha achari land side	0.50	7.3		
11.	MARALUKU NTE	MWS	Near ashwatha katte	0.00	7.4		
12.			Beside				
		PWS1	maramma	0.00	7.2		
	LLI		temple				
13.	HIRINNAHA	PWS2	Inside tank	0.00	7.4		
1.4	LLI	NOVO	bund	0.00	7.0		
14.	PATURU	MWS	Main road side	0.00	1.2		
15.	KANDAKAN AHALLI	MWS	Inside tank	0.00	7.3		
16	AVALAHAI		bullu				
10.	LI	MWS	main road side	0.00	7.1		
17.	BADINIGAN	MANG	Beside	0.00	7.4		
	AHALLI	MWS	dayvappa	0.00	7.4		
10	ANCADEVA		nouse Inside tents				
16.	NAHALLI	PWS 2	bund	0.00	7.1		
19			beside tank				
	AJJAVARA	PWS S1	bund	0.00	7.2		
20.			beside				
	AJJAVARA	PWS S2	seethappa	0.00	7.3		
			house				
21.	00000		beside	0.00			
	SONNAPUR	MWS S1	eshwarappa	0.00	7.2		
22			temple				
<i>LL</i> .	SONNAPUR	MWS S2	hund	0.00	7.4		
23	NUGETHAH		ouliu				
23.	ALLI	MWS S1	beside cannal	0.00	7.3		
24.	NUGETHAH	MWG GO	main ac - 1 -: 1	0.00	7.2		
	ALLI	MWS 52	main road side	0.00	1.2		

International Journal of Innovative Research and Advanced Studies (IJIRAS) Volume 4 Issue 2, February 2017

25.	VARADAHA LLI	MWS	main road side	0.00	7.3	62.	HONNENAH ALLI	PWS S3	beside tank bund	0.00	7.5
26.	NUGETHAH ALLI	MWS	beside chikkavenkatap	0.00	7.1	63.	LINGASHET TYPURA	MWS S1	near berial ground	0.50	7.2
27.	DODDAKIRU	MWS	beside chenakeshwa	0.00	7.2	64.	AAVALAGU RKI	MWS S1	beside muniyappa land	0.50	7.1
28.	MANNARAP	MWG	temple	0.50	7.2	65.	AAVALAGU RKI	MWS	beside forest	0.00	7.2
29.	URA MANNARAP	MWS	inside tank	0.50	7.5	66.	ARIKERE	MWS	inside tank bund	1.00	7.1
	URA	MWS	bund	1.00	1.2	67.	ARIKERE	MWS	main road side	1.60	7.2
30.	NAYANAHA LLI	PWS S1	beside manjunatha house	0.00	7.2	68.	NALLIMARA DAHALLI	PWS S1	beside srinivasareddy land	0.00	7.3
31.	NAYANAHA LLI	PWS S2	beside maheshwari temple	0.00	7.3	69.	NALLIMARA DAHALLI	PWS S2	beside gangamma temple	1.00	7.3
32.	NAYANAHA	PWS S3	beside gudiyappa	0.00	7.5	70.	RENUMAKA LAHALLI	PWS	beside forest	1.30	7.2
33.	NAYANAHA	DWC C4	house side	0.00	7.1	71.	RENUMAKA LAHALLI	PWS	beside forest	1.00	7.4
	LLI	PW5 54	beside m.p.c.s.	0.00	/.1	72.	GOLLU	MWS S1	beside ravi land	0.00	7.3
34.	BANNIKUPP E	PWS S4	main road side	0.00	7.3	73.	LAKKINAKA NAHALLI	MWS	near berial ground	1.60	7.3
35.	ARURU	MWS	check dam side	1.56	7.4	74.	DIBBURU	PWS S1	near factory	0.00	7.2
36.	SETTYGERE	PWS	beside forest	1.00	7.2		CANCADEV		beside		
37.	BHOGAPART HI	MWS	inside tank bund	1.60	7.4		ALUVE	H,P	venkatarayappa land	0.00	7.5
38.	KAKALACHI NTA	MWS	inside tank bund	1.00	7.2	75.	RAYAPANA HALLI	MWS	near berial ground	0.00	7.2
39.	PERESENDR A CROSS	MWS	inside tank bund	1.00	7.4	76.	DODATAMM ANAHALLI	PWS	road side	0.00	7.4
40.	ARURU	PWS S1	inside tank bund	1.00	7.1	77.	GOLLUCHIN APANAHALL	MWS	main road side	0.00	7.1
41.	ARURU	PWS S2	main road side	1.60	7.4		I				
42.	KAKALACHI NTA	PWS	inside tank bund	1.80	7.2	78.	DODDAMAR ALI	HP S2	village center	1.00	7.2
43.	KAKALACHI NTA	PWS	beside vasantareddy	1.00	7.1	79.	DODDAMAR ALI	PWS S3	road side	1.60	7.3
44.	ARURU	MWS	beside school	0.50	7.4	80.	GAVIGANAH ALLI	MWS S2	near berial ground	0.00	7.3
45.	BOOSHETTY HALLI BOOSHETTY	MWS S1	inside tank bund near berial	1.00	7.2	81.	VARAMALL ENAHALLI	MWS	beside venkateshappa land	0.00	7.2
40.	HALLI	MWS S2	ground	0.50	7.4	82.	BEEDAGAN AHALLI	PWS S3	beside railway	0.50	7.1
47.	NTHA	PWS	bund	0.50	7.2	83.	CHADALAP	PWS	near berial	1.60	7.1
40. 49	HANIMATH	141 14 2		1.00	1.3	84	DODDAMAR		giounu		
50	APURA	MWS	road side	0.50	7.4	04.	ALI KOLAVANA	PWS	near gate	1.80	7.4
50.	LI	HP	land	1.00	7.2	95	HALLI	PWS S4	road side	0.00	7.4
51.	NTHA	MWS	bund	0.50	7.1	05.	YHALLI	MWS	main road side	1.00	7.1
52.	AAVALAGU RKI	PWS S1	beside forest	0.50	7.3	86.	YALAVAHA LLI	PWS S1	suggalamma temple	2.00	7.3
54	RKI	PWS S2	bachappa land	0.00	7.4	87.	YALAVAHA	PWS S2	near k.e.b.	1.80	7.1
55	RKI	PWS S3	main road side	0.00	7.1	88.	SAMASENA	MWS	main road side	1.60	7.2
55. 56.	NADUVANA	MWS	beside appaji	1.00	7.4	89.	DODDAPAL	MWS	road side	1.53	7.3
57.	HALLI GERAHALLI	MWS	land road side	1.51	7.2	90.	MARAGANA	MWS	beside tank	1.00	7.1
58.	KOWRANAH ALLI	MWS	beside rajanna land	1.60	7.1	91.	HALLI ENAMINCHA	MWS	bund road side	0.00	7.2
59.	GONDAHAL LI	MWS	beside thimmaiya land	1.00	7.4	92.	NAHALLI REDDYHALI	MWS_1	inside tank	1.60	73
60.	SUSEPAL VA	MWS	inside tank	1.00	7.2			11110-1	bund	1.00	
61.	AAVALAGU	MUG	bund inside tank	0.00	7.2	93. 94.	REDDYHALI REDDYGOLL	MWS2	road side inside tank	1.00	7.2
1	RKI	MWS	bund	0.00	1.5		AVARAHAL	гиз	bund	1.00	1.5

International Journal of Innovative Research and Advanced Studies (IJIRAS) Volume 4 Issue 2, February 2017

			r								
	LI HARISTHAL	PWS	inside tank	0.50	7.2	127.	HENURUKA DIRENHALLI	MWS	inside tank bund	0.50	7.4
95.	A HARISTHAL	PWS	bund inside tank	1.00	7.4	128.	HOSAHUDY	PWS S3	beside patalamma	1.60	7.2
	A	1 WS	bund	1.00	7.4		A		temple		
96.	RAMAGANA PARTHI	MWS	near berial ground	0.00	7.3	129.	JATHAVARA HOSAHALLI	MWS S1	h.v.venkateshai h land side	1.60	7.4
97.	ENAMINCHA NAHALLI	PWS S2	beside tank bund	0.50	7.4	130.	JATHAVARA HOSAHALLI	MWS S2	beside cannal	0.50	7.2
98.	KADURU	MWS	inside tank bund	1.00	7.2	131.	KESHAWAR A	PWS S3	inside tank bund	0.00	7.4
99.	PAPINAYAK ANAHALLI	MWS	near govt primary school	1.51	7.4	132.	ELEHALLI	MWS S3	beside tank bund	0.00	7.3
100.	CHIKKAPAY ALAGURKI	PWS	near h. kurubarahalli	1.00	7.1	133.	SOPPAHALLI	MWS1	inside tank bund	0.50	7.2
101.	KADURU BHOMMAHA	MWS	main road side	1.60	7.2	134.	SOPPAHALLI	MWS S2	beside tank	1.00	7.4
102.	LLI	MWS	road side	1.52	7.4	135.	GUVALAKA	MWS	beside tank	0.50	7.2
103.	BHOMMAHA LLI	MWS	beside thimmanna	1.60	7.5	136.	YANAHALLI GUVALAKA	MWS	road side	0.00	7.4
104.	KAMATHAH	MWS	house inside tank	1.00	7.1	137.	YANAHALLI AKALATHIM	MWS	beside tank	0.00	7.2
105.	ALLI		bund inside tank	1.00		138.	MANAHALLI		bund beside		
106	A.KOTHUR NASTHIMAN	MWS	bund	1.00	7.1		HOSAHALLI	PWS	venkateshappa house	0.00	7.1
107	AHALLI	MWS	road side	0.00	7.4	139.	MARASANA HALLI	PWS	inside tank bund	0.00	7.4
107.	I	MWS	road side	1.00	7.2	140.	HARABAND	MWS S1	road side	0.00	7.1
108.	APALYA	MWS	road side	1.60	7.3	141.	HARABAND	MWG CO	beside	0.00	7.4
109.	KETHENAH ALLI	PWS S1	colony	0.60	7.1		E	MWS 52	haiya land	0.00	7.4
110.	KETHENAH ALLI	MWS S2	main road side	0.50	7.4	142.	HARABAND E	HP S3	road side	0.00	7.2
111.	GOLLADOD DI	MWS	main road side	0.00	7.2	143.	HUNEGAL	PWS	beside manjunatha house	0.00	7.4
	NASTIMANA HALLI	MWS	shanimahathma	1.00	7.3	144.	HUNEGAL	PWS	main road side	0.50	7.1
112.	SADENAHAL	MWS	temple	0.00	74	145.	HARABAND E	PWS S1	beside tank bund	0.00	7.1
113.	LI	in the	beside	0.00		146.	DEVASTANA HOSAHALLI	MWS	main road side	0.00	7.5
	HALLI	MWS	krishanareddy land	0.00	7.1	147.	GUVALAKA YANAHALLI	MWS	inside tank bund	0.00	7.4
114.	YALAGERE	MWS S1	road side	0.50	7.1	148.	KADESEGEN	PWS	main road side	0.00	7.4
115.	KOTHURU	MWS	bund	0.00	7.4	149.	KANITHAHA	PWS S1	inside tank	0.00	7.2
116.	NASTIMANA HALLI	MWS	road side	0.50	7.3	150.	NAKKALAB	MWS	main road side	0.00	7.1
117.	YARANAGE NAHALLI	MWS	road side	0.50	7.3	151.	ACHAHALLI NAKKALAB	PWS 1	road side	0.00	7.4
118.	KARIGANAP ALYA	MWS S2	road side	0.00	7.1	152.	ACHAHALLI KONDENAH		near		
119.	BEERAGAN AHALLI	MWS	near berial ground	0.50	7.4		ALLI	PWS 1	anjaneyaswam y temple	0.00	7.1
120.	GAMGADIPU RA	MWS	main road side	0.00	7.2	153.	NAKKALAB ACHAHALLI	MWS	main road side	0.00	7.1
121.	GOLLADOD DI	MWS	road side	0.50	7.1	154.	BHOMMANA HALLI	PWS	beside chikkanarasimh	0.00	7.4
122.	NELAMAKA NAHALLI	MWS	neside hanumapa house	0.00	7.2	155.	CHIKKASAG ARAHALLI	MWS S1	appa road side	1.00	7.3
123.	THAMMANA YAKANAHA	MWS	main road side	0.00	7.2	156.	THIRNAHAL LI	PWS	main road side	2.00	7.4
	LLI					157.	KADUVATHI	MWS	main road side	0.50	7.2
	JATHAVARA	PWS	near dinne dasappa tank	0.00	7.5	158.	KUPPAHALL I	PWS S3	road side	0.00	7.3
124.	ELEHALLI	MWS	beside cannal	0.00	7.3	159.	ANGATTA	PWS S1	beside doctor	1.60	7.2
125.	HOSAHUDY A	MWS S1	beside high school	1.56	7.3	160.	ARASANAH ALLI	PWS 1	main road side	0.00	7.1
126.	HOSAHUDY A	MWS S2	beside tank bund	0.50	7.4	161.	ARASANAH ALLI	PWS 3	beside cannal	0.00	7.4
						-					

International Journal of Innovative Research and Advanced Studies (IJIRAS) Volume 4 Issue 2, February 2017

162.	KOTHANUR	PWS S3	beside college	0.00	7.4
163.	TUMAKALA HALLI	MWS	near s.j.c.	0.00	7.3
164.	RAMAPATN A	PWS S2	besde sheep house	1.51	7.2
165.	UDAYA GIRINALLA ANAHALLI	MWS	road side	1.60	7.2
166.	NAGASANA HALLI	MWS	beside ashwathappa house	1.60	7.3
167.	KAMMAGUT TAHALLI	MWS	near forest	0.00	7.3
168.	NAGASANA HALLI	MWS	near ashwatha katte	0.00	7.5
169.	BHOMMANA HALLI	MWS	main road side	1.00	7.3
170.	MUDDALAH ALLI	MWS	road side	0.50	7.3
171.	BHODINARE NAHALLI	MWS	beside tank bund	0.50	7.2
172.	HIRENAGAV ALLI	PWS	road side	0.50	7.4
173.	R.CHOKKAN AHALLI	MWS	main road side	1.00	7.5
174.	RENUMAKA LAHALLI	MWS	beside afrs school	1.00	7.2
175.	CHIKKASAG ARAHALLI	MWS	road side	0.50	7.3
176.	MANCHANA BALLE	MWS	near forest	1.60	7.1
177.	KAMASHET TIHALLI	MWS	near ganesha temple	0.00	7.4
178.	SABBENAHA LLI	MWS	road side	0.00	7.1

Figure 5

REFERENCES

- [1] G. T. Hefter, J. Solution Chem., 13 (1984) 457
- [2] A.J. Kresge and Y. Chiang, J. Phys. Chem., 77 (1973) 822
 [3] P. McTigue, T. A. O'Donnell, B. Verity, Aust. J. Chem.,
- 38 (1985) 1797
- [4] G. T. Hefter, C. B. Chan, N. H. Tioh, Anal. Chem. 56 (1984) 749
- [5] K. M. Harmon, I. Gennick, J. Mol. Struct., 38 (1976) 97
- [6] D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch, Fundamentals of Analytical Chemistry, Thomson Brooks/Cole, Belmont, CA, 8th ed.; 2004; pp A-8. (Appendix 3)
- [7] D. Harvey, Modern Analytical Chemistry, McGraw-Hill, New York, 1st ed., 2000, pp 735. (Appendix 3)
- [8] D. C. Harris, Quantitative Chemical Analysis, W. H. Freeman and Company, New York, 7th ed., 2007; pp AP14. (Appendix G)
- [9] M. S. Frant, J. W. Ross jr., Science, 154 (1966) 1553
- [10] K. Srinivasan, G. A. Rechnitz, Anal. Chem. 40 (1968) 509
- [11] D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch, Fundamentals of Analytical Chemistry, Thomson Brooks/Cole, Belmont, CA, 8th ed.; 2004; pp 251-258. (Chapter 9)
- [12] D. Harvey, Modern Analytical Chemistry, McGraw-Hill, New York, 1st ed., 2000, pp 160-162. (Chapter 6)
- [13] D. C. Harris, Quantitative Chemical Analysis, W. H. Freeman and Company, New York, 7th ed., 2007; pp 191-192 (Chapter 8)
- [14] G. D. Christian, Analytical Chemistry, John Wiley & Sons, New York, 6th ed., 2004; pp 272 278. (Chapter 8)
- [15] L. J. Warren, Anal. Chim. Acta