

Page 318 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 10, October 2017

ISSN: 2394-4404

Adaptive Neuro-Fuzzy Approach To Web-Based Enterprise

Software Evaluation

Mfreke Umoh

Department of Computer Science, Akwa Ibom State

Polytechnic, Ikot Osurua, Nigeria

Enoch Nwachukwu

Department of Computer Science, University of Port

Harcourt, Port Harcourt, Nigeria

Chidiebere Ugwu

Department of Computer Science, University of Port

Harcourt, Port Harcourt, Nigeria

I. INTRODUCTION

The primary goal of any evaluation is to check results of

actions, in order to improve the quality of the actions or to

choose the best action alternative. Evaluating software aids

assessment of the various aspects of a system for a decision

among several prototypes or for comparing several versions of

a software system (Roberts and Morgan, 1983). Using a

prepared list of criteria along with some practical

experimentation, a software evaluation makes it possible to

determine if the products would be helpful to the client or if

some other combination of software products would serve to

better advantage. Software can be evaluated with respect to

different criteria or metrics such as functionality, reliability,

usability, efficiency, maintainability, and portability. Software

evaluation, therefore, is a task, which results in one or more

reported outcomes (Suchman, 1967); and is dependent on the

current knowledge of science, methodological standards

applicable to software development, which plays very critical

role within Human-Computer Interaction (Asuquo et al.,

Abstract: This paper developed an intelligent web-based enterprise software evaluation system (IWBES2) using a

hybrid approach called adaptive neuro-fuzzy inference system (ANFIS) by combining fuzzy logic technique and neural

network model. The neural network was designed using Tagaki Sugeno inference mechanism while Gaussian

membership function (Gaussmf) was used to map the input parameters to the output parameter. The system was

implemented in MATLAB
(R)

 R2015a using a total of 682 dataset collected from CISCO workstation 3750 in Akwa Ibom

State Transport Corporation (AKTC) data warehouse, Uyo. Back-propagation and hybrid learning methods were deployed

in training the network comprising software quality attributes of functionality, reliability, usability, efficiency,

maintainability, and portability after a pre-processing analysis by principal component analysis (PCA) for dimension

reduction of the dataset. The performance evaluation of the system was carried out using mean square error (MSE)

estimator. Results indicate training MSE values of 0.024642 and 0.047303 at 300 epochs for hybrid learning algorithm

and back-propagation method, respectively. Results revealed that hybrid learning algorithm processes faster than back-

propagation method in the evaluation of software quality attributes. The system performance in terms of software quality

prediction using hybrid method was better than back-propagation with average error of 0.024642 and 0.047283,

respectively further revealing that usability and portability software attributes had no much effect on software design

while reliability, functionality, efficiency and maintainability influences the overall software quality performance most.

Therefore, ANFIS evaluation of IWBES2 with hybrid learning method performed better than back-propagation and is

suitable for web-based software quality prediction.

Keywords: ANFIS, PCA, software quality attributes, web-based software evaluation

Page 319 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 10, October 2017

ISSN: 2394-4404

2008). The standard provides a framework for organizations to

define a quality model for a software product.

Figure 1 shows software quality model comprising six

software quality metrics and each quality sub-characteristics

(ISO 9241,). Functionality is a set of attributes that bear on the

existence of a set of functions and their specified properties.

The functions are those that satisfy stated or implied needs

such as suitability, accuracy, interoperability, security, etc.

while reliabilityis a set of attributes that bear on the capability

of software to maintain its level of performance under stated

conditions for a stated period of time. This implies compliance

to fault tolerance and recoverability. On the other hand,

usability of a product is the extent to which the product can be

used by specific users to achieve specific goals with

effectiveness, efficiency, and satisfaction in a specific context

of use. The context of use is defined in terms of the user, the

task, the equipment, and the environment. Ideally, usability of

a software product implies understandability, learnability,

operability, and attractiveness. Efficiency is a set of attributes

that bear on the relationship between the level of performance

of the software and the amount of resources used, under stated

conditions, which implies time behaviour and resource

utilization. Maintainability refers to a set of attributes that bear

on the effort needed to make specified modifications for

system’s stability while portability is a set of attributes that

bear on the ability of software to be transferred from one

environment to another which implies adaptability,

installability, and co-existence. Each quality sub-characteristic

is further divided into attributes. As a result, the notion of user

extends to operators as well as to programmers, which are

users of components such as software libraries.

Software evaluation is usually performed at the end of the

developing phase, using experimental designs and statistical

analysis but can, however, be used as a tool for information

gathering within iterative design. This situation has been

improved in recent years in a number of ways (Whitefield,

1991).

Figure 1: Software quality model (adopted: ISO/IEC 9126)

Most times the software bought by clients or

organizations do not meet their needs despite the huge amount

of resources and significant portion of organisations’ capital

budgets consumed. The problem of poor quality product and

software failure has caused more than inconvenience

especially in this era of ubiquitous computing whereby users

asses the system anywhere anytime. Software errors have

caused human fatalities now that most of the systems used at

home, in the hospital, and industry are embedded systems. The

causes have ranged from poorly designed user interfaces,

specification misinterpretation, to direct programming errors.

Due to the cost of maintaining faulty or unreliable systems, it

is more cost effective to detect potential software quality

problems earlier rather than later in software development.

An application with good structural software quality costs less

to maintain and is easier to understand and change in response

to pressing business needs. Moreover, poor structural quality

is strongly correlated with high-impact business disruptions

due to corrupted data, application outages, security breaches,

and performance problems.

The quality attribute of software products are often

neglected at the developmental stage due to lack of knowledge

perhaps from the domain expert. Most works evaluating web-

based software products employed the use of multi-criteria

decision making technique (Dubey et al., 2012; Ioannis,

2013), which lack the capability to handle uncertainty and

imprecision inherent in attributes used in software quality

measurement. To avoid the problem of software

ineffectiveness, this work develops an intelligent web-based

software evaluation system using metrics such as

functionality, reliability, usability, efficiency, portability and

maintainability. The paper presents a hybridized approach by

designing an adaptive Neuro-fuzzy inference system (ANFIS)

for evaluating and selecting the most appropriate software

among alternatives. Consequently, the parameters of the fuzzy

system are tuned by neural networks to efficiently evaluate

software metrics in order to ascertain the level of software

quality of clients or organizations.

The rest of the paper is structured as follows. Section 2

presents a critical review of related works while section 3

presents the design of the adaptive Neuro-fuzzy approach to

software evaluation. In section 4, the results obtained from

MATLAB implementation of the intelligent web-based

enterprise software evaluation system (IWBES2) are

presented. Finally, section 5 gives the concluding remarks.

II. RELATED WORKS

Software testing can be conducted as soon as executable

software exists. The overall approach to software development

often determines when and how testing is conducted. For

example, in a phased process, most testing occurs after system

requirements have been defined and then implemented in

testable programs. In contrast, under an Agile approach,

requirements, programming, and testing are often done

concurrently. Testing cannot establish that a product functions

properly under all conditions but can only establish that it does

not function properly under specific conditions (Cem, 1999).

The scope of software testing often includes examination of

code as well as execution of that code in various environments

and conditions as well as examining the aspects of code: does

it do what it is supposed to do and do what it needs to do. In

the current culture of software development, a testing

organization may be separate from the development team.

Software testing can provide objective, independent

information about the quality of software and risk of its failure

to users and/or sponsors (Cem, 2006).Information derived

from such test may be used to correct the process by which

software is developed (Kolawa, 2007). However, the primary

purpose of testing is to detect software failures so that defects

may be discovered and corrected. Software faults typically

occur when the programmer makes an error (mistake) through

misinterpreted specifications, which results in a defect (fault,

http://en.wikipedia.org/wiki/Programming_error
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Human_error
http://en.wikipedia.org/wiki/Fault_%28technology%29

Page 320 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 10, October 2017

ISSN: 2394-4404

bug) in the software source code. If this defect is executed, in

certain situations, the system will produce wrong results,

causing a failure, though not all defects will necessarily result

in failures when the environment is changed (e.g. different

hardware platform or interaction with different software).

Artificial intelligence (AI) methods have been widely

applied in students classification and performance modeling,

medical disease diagnosis, stock market forecasting, electric

load prediction, supply chain management, network traffic

control, image processing and feature extraction, etc. with

capabilities to handle linguistic uncertainties by modeling

vagueness and unreliability of information. AI methods

mainly comprise fuzzy logic, neural networks, genetic

programming, and hybrid approaches such as Neuro-fuzzy

systems, genetic fuzzy systems, and genetic programming

neural networks, etc. Recently, many authors have shifted to

Neuro-fuzzy domains for much improved results and a huge

number of related applications are being developed (Taylan et

al. 2009; Sindal et al. 2009; Iraji et al. 2012; Khamenah et al.

2012; Obi and Imainvan 2011; Abbas et al. 2011; Kablan

2011; Giovans, 2012; Fang 2012; Gomathi et al. 2010; Jafari

et al. 2011, Sood and Aggarwal, 2011; Sudheer and Mathur

2012). Neuro-fuzzy systems (NFS) refer to a combination of

artificial neural networks and fuzzy logic (Jang, 1993). The

basic idea behind this NFS is that it combines human-like

reasoning style of fuzzy systems with the learning and

connectionist structure of neural networks. NFS provides

powerful and flexible universal approximations with the

ability to explore interpretable IF-THEN rules. The use of

NFS is proliferating into many sectors in our social and

technological life and software evaluation cannot be an

exemption.

Sevarac (2006) presented a Neuro-fuzzy system for

student modeling. The proposed system performed

classification of students based on qualitative observations of

their characteristics. Taylan et al. (2009) proposed adaptive

Neuro fuzzy inference system (ANFIS) using genetic

algorithm (GA) to assess student’s academic performance. Obi

and Imainvan (2011) analyzed Alzheimer disease diagnosis

using Neuro fuzzy inference procedure. Agboizebeta and

Chukwuyeni (2012) have focused on thyroid disorder with the

help of Neuro fuzzy expert system using a set of symptoms.

The system designed was an interactive system that was able

to interact with the patient briefing his current condition.

Khameneh et al. (2012) has performed investigation using

ANFIS to detect abnormality in red blood cell and classify

blood samples into normal and abnormal category. Their

motivation behind the research work was to identify, classify,

diagnosis different types of disease for different fields. Sindal

et al. (2009) developed Neuro fuzzy call admission control

algorithm to reduce voice data traffic in CDMA cellular

network by transmitting signals at lower power level. Abbas et

al. (2011) proposed Neuro fuzzy system for best route

selection to avoid traffic congestion. They used Neuro fuzzy

logic and ant colony system (ACS) algorithm for routing.

Makhsoos et al. (2009) worked on face recognition using

multi-layer perceptron (MLP) network by combining fuzzy

logic, neural network and mixture of experts. They presented

the importance of combining these two technologies (neural

networks and fuzzy logic) in face recognition. Gomathi et al.

(2010) proposed neuro fuzzy approach for facial expression

recognition system to recognize the human facial expressions

like happy, fear, sad, angry, disgust and surprise using local

binary pattern (LBP) histogram. This model reported 95.29%

of classification accuracy.

Dubey et al. (2012) proposed a methodology for

quantifying the usability of software using a fuzzy multi-

criteria weighted average approach. Fuzzy logic helped to deal

with the uncertainty and imprecision of the importance and

rating of attributes on which usability depends. This approach

was chosen due to the highly unpredictable nature of the

attributes on which usability depends. Ioannis (2013)

presented an integrated solution through which significant

improvement may be achieved, based on Multiple Criteria

Decision Aid (MCDA) methodology and the exploitation of

packaged software evaluation expertise in the form of an

intelligent system. The MCDA methodology consists of

different methods categorized into three classes, viz; multiple

attribute utility method, outranking method and interactive

method. Ioannis (2013) only addressed generalized issues of

software evaluation that can be applied to diverse end user

domains but was not specified to web-based software which is

the main interest of this research. Alexiei (2014) proposed an

Intelligent Usability Evaluation (IUE) tool to automate the

usability evaluation process. Two set of tools - those

predicting the usage of websites such as Cognitive

Walkthrough for the Web (CWW) and those making use of

conformance to standards such as Usability Evaluation

framework (USEFUL) were used. These tools evaluated the

usability of a website by employing the heuristic evaluation

technique which references the set of research-based usability

guidelines. However, there was no integration of the

intelligent tool directly within website development

environment. In this way, usability violations could surface in

real time as the website is being created. This non intelligent

approach involves the use of real persons; like the focused

group and cognitive walkthrough. Farooq (2013), proposed a

set of guidelines which define a protocol to carry out

comparative study of software testing techniques. Certain

factors were considered necessary for comparison during such

test. These include number of faults, fault rate, fault type, size

(test case generated), coverage, time (i.e. execution time),

software/program type, experience of subjects, reliability

improvement. The fact that a single technique cannot give the

require result informs the selection of a combination of

appropriate testing techniques to mitigate targeted software

development faults.

Marza et al. (2008) developed and evaluated a Neuro-

fuzzy model to estimate software projects development time

which is one of the challenging tasks for software developers.

The authors used MATLAB 7.4 to process the fuzzy logic,

neural network and Neuro-fuzzy systems. Khyati et al. (2013)

proposed ANFIS-based software effort evaluation, which

combines best features of fuzzy logic and parallel processing

neural networks. It possesses fast convergence and has more

accuracy than back-propagation neural network. Pergola

(2013) considered web-based learning systems as a

supplement to their Textbooks and found out that there are

critical differences across publishers with respect to the

system’s interface, functions, content, features, and support.

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Failure

Page 321 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 10, October 2017

ISSN: 2394-4404

These differences directly impact the effectiveness of a web-

based learning system as an instructional tool and as a

corollary, which, perhaps may impact the ultimate utility of

the associated textbook as a pedagogical resource. As such, an

evaluation of available web-based learning systems became an

essential component of the textbook review process,

comprising a meticulous evaluation of the system’s

functionality and features in light of instructor and student

needs and preferences. This guidance was presented in the

form of a framework based on key processes underlying the

systems development life cycle (SDLC). The SDLC phases

most relevant to evaluating web-based learning systems

include systems survey, system analysis, and systems selection

processes. Zulkefi et al. (2012) made used of Software

Usability Measurement Inventory (SUMI) to evaluate a tool

for cost estimate called WebCost. WebCost was developed

using Java and Eclipse editor as a standalone application.

SUMI was selected to serve as an evaluation tool to measure

effectiveness in terms of interface and provide precise results.

It became a solution to the recurring problem of measuring

users' perception/satisfaction of the usability of software by

providing a valid and reliable method for the comparison of

products and different versions of the same products, as well

as providing diagnostic information for future developments.

This usability instrument composed of a validated 50-item

paper-based questionnaire in which respondents score each

item on a three-point scale of agreed, undecided and disagree.

The questionnaire was designed to measure the effects,

efficiencies, simplicity, helpfulness and control of a product.

This approach was time consuming, involving users both as

evaluator and participants which may not yield accurate result

based on certain factors like diverse user roles and

preferences.

Chai-Lee (2012) carried out web site evaluation focusing

on Web site attributes, organization and technology,

enumerating the most common website criteria applicable as

quality, functionality, credibility, reliability, attractiveness,

systematic structure and navigation. For Mike (2011), a

criteria-based quantitative assessment of the software in terms

of sustainability, maintainability, and usability can inform

high-level decisions on specific areas for software

improvement. The assessment involves checking whether the

software, and the project that develops it, conforms to various

characteristics or exhibits various qualities that are expected of

sustainable software. The more characteristics that are

satisfied the more sustainable the software. He pointed out

that not all qualities have equal weight. In performing the

evaluation, one may want to consider how different user

classes affect the importance of the criteria. For example, for

usability, understandability - a small set of well-defined,

accurate, task-oriented user documentation may be

comprehensive for users but inadequate for developers.

Arockiam, (2010) suggested a service oriented architecture

(SOA) reliability evaluation model using two attributes:

availability - which is the quality attribute of whether the web

service is present or ready for immediate use, and accessibility

- which is the quality attribute of service that represents the

capability of serving a web service request. Zhou (2009)

proposed a website quality metrics and methods to measure

the website interface (aesthetic) and reputation quality factors.

The study built a website evaluation tool with four layers, viz;

Tree-Traversal, Parsing, Data Metrics, and Graphical User

Interface to measure website quality automatically. Certain

specific technologies such as Data Crawler, Traversal,

Recursive Algorithm, Data Analysis and Transmission were

used in the program design. Zhou’s framework only

highlighted the web quality hierarchy and lacked other major

components of its kind. Ivory (2001) explored the

development of an automated Web evaluation methodology

and tools where an extensive survey of usability evaluation

methods for Web and graphical interfaces was presented. The

work presented a new methodology for HCI: a synthesis of

usability and performance evaluation techniques, which

together build an empirical foundation for automated interface

evaluation. The general approach involves: 1) identifying an

exhaustive set of quantitative interface measures; 2)

computing measures for a large sample of rated interfaces; 3)

deriving statistical models from the measures and ratings; 4)

using the models to predict ratings for new interfaces; and 5)

validating model predictions.

This work presents an intelligent framework for evaluated

web-based software products by combining two promising AI

techniques – neural networks and fuzzy logic. The hybrid

model has the ability to train the dataset, enable linguistic

representation of model’s inputs and output to tolerate

imprecision and is suitable for quality evaluation as many

software attributes are measured on nominal or cardinal scale

type which is particular case of linguistics values. The

learning capability of neural networks facilitates flexibility in

problem modeling with embedded knowledge to provide

support for attribute quantification. There is also the advantage

of speedy computation and improve performance evaluation

through the elimination of construction errors thereby

increasing the quality of enterprise software.

III. DESIGN OF THE INTELLIGENT WEB-BASED

ENTERPRISE SOFTWARE EVALUATION SYSTEM

A. FRAMEWORK OF THE AUTOMATED WEB-BASED

SOFTWARE EVALUATION SYSTEM

Figure 2 shows the designed framework of the intelligent

web-based enterprise software evaluation system (IWBES2). It

integrates the different components of the entire system and

comprises the intelligent front end (user interface) and the

kernel (processing logic). The intelligent front end has tools

that support the collection of necessary information to guide

the evaluator in the correct application of the chosen

methodology and provides expertise on software attribute

evaluation. Expert assistant provided by the expert module

helps the human evaluator assign values to attributes of the

software evaluation model and manage past evaluation results,

in order to be reused in new evaluation problem. The kernel

consists of two major sub-components – the knowledge base

containing the database model, quality model base, fuzzy logic

model, neuro-fuzzy model, and - the decision support engine

containing ANFIS and the emotional and cognitive fillers

along with a self-training facility. Following is a description of

some of these components.

Page 322 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 10, October 2017

ISSN: 2394-4404

DATABASE MODEL

The database model is made up of classes with objects

and associated attributes. The database is designed in MySQL.

QUALITY MODEL BASE

The quality model base in figure 1 with a three-level

structure comprising quality characteristics, quality sub-

characteristics and measurable criteria (indicators) is adopted.

In the first level, the software evaluation model presents six

quality characteristics which include functionality, reliability,

usability, efficiency, maintainability, portability. The second

level characteristic is broken down by several sub-

characteristics. Each sub-characteristic is inherited from

parental quality characteristics. The third level is the

measurable indicators. Finally, the values of the metrics are

evaluated using a mathematical model.

Figure 2: Framework of the intelligent web-based enterprise

software evaluation system

FUZZY LOGIC MODEL

The fuzzy logic model comprises a knowledge base and a

processing stage. Numerical crisp variables are the input of the

system in the processing stage. These variables are passed

through a fuzzification unit where they are transformed into

linguistic variables and a mapping of attributes to MF is

performed to determine their degree of membership. The

result becomes the fuzzy input of the inference engine. This

fuzzy input is transformed by rules of the inference engine to

fuzzy output. These linguistic results are then changed by a

defuzzification unit into numerical values that becomes the

output of the system.The block diagram of the fuzzy logic

model is as shown in Figure 3 with fuzzification, inference

engine, rulebase, and defuzzification as components. A total of

15,625 fuzzy rules were obtained from six linguistic variables

of functionality, reliability, usability, efficiency,

maintainability, and portability from triangular membership

function but reduces to 13 rules with gauss2 membership

function and sub clustering. The linguistic terms used for each

of the variables are very high (VH), high (H), moderate (M),

low (L), very low (VL). The Takagi-Sugeno inference

mechanism was adopted for rules formulation.

Figure 3: Fuzzy logic model

Two common techniques of defuzzification are the

CENTROID and MAXIMUM methods. However, the

CENTROID method was employed in this work, where the

crisp value of the output variable is obtained by finding the

variable value of the center of gravity of the MF for the fuzzy

value. Gaussian MF was adopted due to its ability to handle

high dimension of linguistics terms and data clustering.

Gaussian curve MF depends on two parameters: the cluster

center (C), which shows the results of clustering algorithms in

the form of matrix, and sigma (σ) which is used to determine

the value of Gaussian MF parameters. The general form of a

Gaussian MF is shown in equation (1).

ꬵ (x, σ, c) = ꬵ¯ (x-c)

 2σ ² (1)

Where, x is the variable, σ is the sigmoid function, c is the

cluster center.

The linguistic values for IWBES2 variables and the MF

for each variable are as shown in equations2 - 7, respectively.

The MF graph for all input and output parameters are shown

in figures 4 and 5, respectively.

Figure 4: Input MF

Figure 5: Output MF

The general form of the fuzzy rules is shown in equation

(8) as:

Page 323 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 10, October 2017

ISSN: 2394-4404

If x is A and y is B, then f = px + qy +r (8)

where, x and y are input variables; A and B are fuzzy sets

of the input variables; f is the output variable; p, q, and r are

consequent parameters. Some of the rules are as follows:

 IF (Functionality is VH) and (Reliability is VH) and

(Usability is VH) and (Efficiency is VH) and

(Maintainability is VH) and (Portability is VH) THEN

(Quality is out1cluster1) (1)

 If (Functionality is H) and (Reliability is H) and

(Usability is H) and (Efficiency is H) and (Maintainability

is H) and (Portability is H) then (Quality is out1cluster2)

(1)

The fuzzy rules output are then mapped to a crisp point

during defuzzification using the formula in equation (9).

ꬵ (X, ꬵ, C) = ꬵ¯ (X-C) ²

 2ꬵ² (9)

where, x is the variable, ꬵ is the sigmoid function, c is

the peak of the bell

NEURO-FUZZY MODEL

A NFS is a fuzzy system that uses a learning algorithm

inspired by neural network theory to determine its parameters

(fuzzy sets and fuzzy rules) for processing data samples. The

adaptive Neuro-fuzzy inference system (ANFIS) designed

from the Sugeno FIS structure is shown in Figure 6 as a

multilayer feed-forward framework with five layers (Takagi

and Sugeno, 2015). The Sugeno FIS is useful for modelling

nonlinear systems by interpolating between multiple linear

models. ANFIS comprises two components, viz FIS and ANN,

thus exhibit the capability to capture the benefits of both

techniques in one framework. Its inference system

corresponds to a set of IF-THEN rules with learning capability

to approximate nonlinear functions. ANFIS constructs fuzzy

MF parameters (adjusted by a hybrid learning algorithm) to

approximate precisely, the model parameters. The MFs are

useful in causing interaction of the input parameters during the

training phase, until an optimal performance is achieved. The

hybrid algorithm of ANFIS combines the gradient descent and

least square methods. Gradient descent-based approaches and

back-propagation techniques are some important learning

algorithms in feed forward neural networks. The supervised

learning stage was actualized by selecting fuzzy input

parameters to build the fuzzy rules.

The nodes in layer 1 represent the fuzzy input linguistic

variables which converts input values to the next level while

those in layer 2 represent the input MFs which perform

fuzzification of the input linguistic variables. The nodes in

layer 3 represent the fuzzy rules. This layer is where the max-

min operations are performed to determine the firing strength

of the associated rules and overall system output. The nodes in

layer 4 represent the output MFs that handle the weight

assigned directly by an expert or from the historical data while

layer 5 handles defuzzification process for evaluating the

entire system output.

Figure 7 shows the sub-clustering algorithm for FIS

generation and ANFIS optimization. Subtractive clustering

assumes that each data point is a potential cluster center. The

algorithm does the following:

STEP 1: Calculate the likelihood that each data point

would define a cluster center, based on the density of

surrounding data points.

STEP 2: Choose the data point with the highest potential

to be the first cluster center.

STEP 3: Remove all data points near the first cluster

center. The vicinity is determined using cluster Influence

Range.

STEP 4: Choose the remaining point with the highest

potential as the next cluster center.

Step 5: Repeat steps 3 and 4 until all the data is within the

influence range of a cluster center.

Figure 6: ANFIS architecture

Figure 7: Sub-clustering for FIS generation and ANFIS

optimization

IV. DISCUSSION OF RESULTS

A. DATA DESCRIPTION AND IMPLEMENTATION

PROCEDURE

The automated web-based software evaluation system

was implemented on windows 10 platform, using PHP 5.6.25

from WAMP server 3.0.6 as the front-end engine, MySQL

Layer 4

Page 324 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 10, October 2017

ISSN: 2394-4404

database 5.7.14 from WAMP server 3.0.6 and fuzzy logic tool

box of MATLAB 2015 as the back-end engine. A total of 682

dataset was collected from AKTC Head Office, Uyo, Nigeria.

The dataset covered data from CISCO WS-3750 Network

Operating System, Transport Manager Software and Miktrotik

Cloud router interface to Tally ERP9. The data obtained

advanced in the following major stages, viz; data collection

and pre-processing, FIS implementation and ANFIS

implementation.

The dataset consist of 6 attributes which are metrics used

as input to the fuzzy logic model. The attributes appear in their

weights, totalling a maximum of 10 as shown in figure 8(a).

The pre-processing implementation was carried out using

principal component analysis (PCA) to reduce the dimensions

of the dataset which consists of a large number of interrelated

variables and obtain the most prominent parameters containing

useful information in terms of rows of data, thereby deleting

some missing attributes. The processed data is shown in figure

8(b). For instance, rows 1-147and 444-526 were combined to

form training data, rows 296-443 and 610-682 were combined

to form checking data while rows 148-295 and 527-609 were

combined to form testing data. To reveal whether there is need

to re-organize the data or choose another data for FIS, which

forms input for ANFIS, the correlation between training and

checking data was performed and the result is presented in

figure 9. The checking data appears in the plot as pluses

superimposed on the training data. The horizontal axis is

marked dataset index. This index indicates the row from

which input data value was obtained (whether or not the input

is a vector or a scalar). Figure 10(a) and (b) show the FIS rule

generation and rule viewer indicating six input parameters and

one output, respectively.

(a) Raw data

(b) Pre-processed data by PCA

Figure 8: Quality attributes from dataset

Figure 9: Plot of checking and training data

(a) Rule editor

(b) Rule viewer

Figure10: FIS window

The training, checking and testing data, loaded either

from file or workspace, help generate FIS to train and test FIS

Page 325 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 10, October 2017

ISSN: 2394-4404

as well as perform ANFIS training and testing. The output

information shows six input and one output parameters with

511 trained data pairs. The optimisation method employed

back propagation or hybrid algorithm. Figure 11(a-b) shows

the ANFIS training output having thirteen rules with average

error value of 0.027306 at 300 epochs. The training data are in

blue colour while the FIS output are in red colour.

(a) Hybrid method

(b) Back propagation algorithm

Figure 11: ANFIS training output

B. ANFIS EVALUATION RESULTS

The system performance was evaluated comparing hybrid

and back-propagation methods of ANFIS. The performance

evaluation model adopted was the mean square error (MSE).

MSE measures the differences between the values predicted by

a model and the values actually observed. Results were

evaluated to determine how well the network (model) output

fits the desired output, using the MSE performance criterion

expressed in equation (10) as:

 (10)

where, is the desired output, is the network output,

and is the number of data items.

Table 1 summarizes the ANFIS training information

deployed. Furthermore, results from tables 2 and 3 revealed

that the ANFIS model is significant in optimizing software

quality prediction, as the MSE values of training and test data

gave close results for both hybrid and back-propagation

methods. However, results indicate that the system

performance in terms of software quality prediction using

hybrid method was better than back-propagation method since

the former yielded lower MSE values than the later at the

same number of epochs. Furthermore, results showed that

hybrid learning algorithm processes faster than the back-

propagation algorithm in the evaluation of software quality

attributes. The average error of 0.047283 was observed at

epoch 300 in the back-propagation learning algorithm while

an average error of 0.024642 was observed at the same

training epoch in hybrid learning algorithm. The subtractive

clustering algorithm was able to reduce the dimension of the

fuzzy rules from 15625 to 13 rules, thereby reducing

computational complexity. Results indicate that at epoch 300,

the testing error values of 0.024642 and 0.047293 were

observed between the computed data and the desired output

for hybrid method and back-propagation algorithm,

respectively. Over-fitting was resolved by testing the FIS

trained data against the checking data, and choosing the MF

parameters to be those associated with the minimum checking

error if these errors indicate model over-fitting. The result

generated from the FIS training shows that usability and

portability are software attributes with less hierarchy and so

these attributes had no much effect on software design.

Software performance according to the data shows that

reliability, functionality and maintainability influences the

overall software quality most.

S/N Parameter Sub-clustering

method

1 Number of nodes 191

2 Linear parameters 91

3 Non-linear parameters 156

4 Total number of parameters 247

5 Number of training data pairs 511

6. Number of checking data

pairs

511

7 Total number of fuzzy rules 13

8 Training MSE 0.027311

9 Validation MSE 0.052537

10 Testing MSE 0.052537

Table 1: ANFIS training information
S/N Number

of

epochs

Training

error

Checking

error

Testing

error

Average

error

1 50 0.027065 0.02665 0.026852 0.02706

2 100 0.026347 0.026073 0.025819 0.026344

3 150 0.025506 0.025051 0.025257 0.02505

4 200 0.024816 0.024642 0.024642 0.024642

5 250 0.024642 0.024642 0.024642 0.024642

6 300 0.024642 0.024642 0.024642 0.024642

Table 2: ANFIS performance with hybrid algorithm

Page 326 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 10, October 2017

ISSN: 2394-4404

S/N Number

of

epochs

Training

error

Checking

error

Testing

error

Average

error

1 50 0.047429 0.047421 0.047425 0.047421

2 100 0.047413 0.047399 0.047406 0.047399

3 150 0.04739 0.047373 0.047381 0.047373

4 200 0.047363 0.047343 0.047354 0.047345

5 250 0.047334 0.047314 0.047324 0.047314

6 300 0.047303 0.047283 0.047293 0.047283

Table 3: ANFIS Performance with back-propagation

algorithm

V. CONCLUDING REMARKS

This paper shows how ANFIS model can be used to

significantly optimize the prediction of quality attributes in

software. The collected dataset was subjected to PCA for the

purpose of dimension reduction and normalized by computing

the covariance between the variables. Findings revealed that

system performance in terms of software quality prediction

using hybrid method resulted in lower MSE values, faster

processing speed, and was better than back-propagation

method for all considered epochs. Results revealed that

usability and portability software attributes had no much effect

on software design while reliability, functionality, efficiency

and maintainability influences the overall software quality

performance most. Hence, users of software systems should

place importance to software quality attributes based on how

relevant the attributes are for the success of the organization.

Software developers ought to employ test driven approaches

during software development in order to minimize error.

Future works shall consider the use of extreme learning

machine to improve learning rate and proffer solution to

problems of stopping criteria, number of epochs and local

minima inherent in conventional gradient descent algorithms.

REFERENCES

[1] Abbas, S., M.S. Khan, K. Ahmed, M. Abdullah, U.

Farooq (2011). Bio-inspired neuro-fuzzy Based dynamic

route selection to avoid traffic congestion, International

Journal of Scientific & Engineering Research 2(6).

[2] Agboizebeta, I. A., O.J. Chukwuyeni (2012). Application

of neuro-fuzzy expert systemfor the Probe and prognosis

of thyroid disorder, International Journal of Fuzzy Logic

Systems, 2(2).

[3] Agboizebeta, I. A., O.J. Chukwuyeni (2012). Cognitive

neuro-fuzzy expert system for Hypertension Control,

Computer Engineering and Intelligent Systems 3 (6), 21–

32.

[4] Alexiei Dingli, Sarah Cassar (2014). An Intelligent

Framework for Website Usability-Advancesin Human

Computer Interaction.

[5] Asuquo, D. E., Williams, E. E., Oluwade, B. A., and

Bassey, P. C. (2008). Educational Websites Usability

Evaluation, Journal of Engineering and Applied Sciences,

3(7), 574-582.

[6] Cem Kaner, Falk, Jack; Nguyen, Hung Quoc (1999).

Testing Computer Software, 2nd Ed. New York: John

Wiley and Sons, Inc

[7] Cem, Kaner (2006). Exploratory Testing. Florida Institute

of Technology, Quality Assurance Institute Worldwide

Annual Software Testing Conference, Orlando, and FL.

Retrieved November 22, 2014.

[8] Chai-Lee Goi (2012). A Review of Web Evaluation

Criteria for E-Commerce Web Sites, International Journal

of Digital Information and Wireless Communications

2(2): 197-201

[9] Dubey Sanjay Kumar, Anubha Gulati, Ajay Rana, (2012).

Usability evaluation of software System using fuzzy

Multi criteria approach. International Journal of Computer

Science Issues, 9(3),

[10] Fang, H. (2012). Adaptive neurofuzzy inference system in

the application of thefinancial Crisis Forecast,

International Journal of Innovation, Management and

Technology, 3(3), 250–254.

[11] Farooq, U., M.S. Khan, K. Ahmed, M.A. Saeed, S.

Abbas, (2011). Autonomous system Controller

forvehicles using neuro-fuzzy, International Journal of

Scientific & Engineering Research 2 (6) (2011).

[12] Giovanis, E. (2012). Study of discrete choice models and

adaptive neuro-fuzzy inference System in the prediction

of economic crisis periods in USA, EconomicAnalysis &

Policy 42 (1), 79–95.

[13] Gomathi, V., K. Ramar, A.S. Jeevakumar (2009). A neuro

fuzzy approach for facial expression recognition using

LBP histograms, International Journal of Computer

Theory and Engineering 2(2), 1793–8201.

[14] Ioannis Stameles (2013). Knowledge Based Evaluation of

Software System, International Journal of Digital

Information and Wireless Communications, 2(2):

197-201

[15] Iraji, Md. S., M. Aboutalebi, N.R. Seyedaghaee, A.

Tosinia (2012). Students’ classification with adaptive

neuro fuzzy, International Journal of Modern Education

andComputer Science 7, 42–49.

[16] ISO/IEC (1991). ISO/IEC 9126. Information technology -

Software product evaluation –Quality characteristics and

guidance for their use.

[17] Ivory, Melody Yvette (2001). An Empirical Foundation

for Automated Web Interface Evaluation

[18] Jackson, M., Crouch, S. and Baxter, R. (2011). Software

Evaluation: Criteria-based Assessment

[19] Jafari, A., A.K. Llkhchi, Y. Sharghi, K. Ghanavati (2011).

Fracture density estimationfrom Petrophysical log data

using the adaptive neuro-fuzzy inference system,Journal

of Geophysics and Engineering 9 (1).

[20] Jang, J. S. R. (1993). Adaptive network based fuzzy

inference systems, IEEE Transactions on Systems, Man

and Cybernetics, 665–685.

[21] Kablan, A. (2009). Adaptive neuro-fuzzy inference

system for financial trading usingintraday seasonality

observation model, World Academy of Science,

Engineering and Technology 34, 479–488.

[22] Khameneh, N. B., H. Arabalibeik, P. Salehian, S.

Setayeshi (2012). Abnormal red bloodcells detection

Page 327 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 4 Issue 10, October 2017

ISSN: 2394-4404

using adaptive neuro-fuzzy system, Studies in Health

Technology and Informatics 173, 30–34.

[23] Khyaatt, M., Mewada, Sinhat A. Verma, B (2013).

Adaptive Neuro-Fuzzy Inference System (ANFIS) Based

Software Evaluation, International Journal of Computer

Science Issues, 10(5),

[24] Kolawa, Adam; Huizinga, Dorota (2007). Automated

Defect Prevention: Best Practices in Software

Management, Wiley-IEEE Computer Society Press.

[25] Makhsoos, N. T., R. Ebrahimpour, A. Hajiany (2009).

Face recognition based onneuro-fuzzy system,

International Journal of Computer Science and

NetworkSecurity 9(4), 319-326.

[26] Marza, D., D. Seyyedi, L.F. Capretz (2008). Estimation

development time of software projects using a neuro-

fuzzy approach, World Academy of Science, Engineering

and Technology, 22, 575–579.

[27] Obi, J. C. and A.A. Imainvan (2011). Decision support

system for the intelligient identification of Alzheimer

using neuro fuzzy logic, International Journal on

SoftComputing, 2(2), 25–38.

[28] Pergola, Teresa M., L. Mlissa Walters (2013). Evaluating

web-based learning systems.

[29] Roberts, T. L. and Moran, T. P. (1983). The evaluation of

text editors: Methodology and empirical

[30] Sevarac, Z. (2006). Neuro fuzzy reasoner for student

modelling, IEEE International Conference on Advanced

Learning Technologies, 740–744.

[31] Sindal, R., S. Tokekar (2009), A neuro-fuzzy call

admission control algorithm forvoice/data traffic in

CDMA cellular network, in: IEEE International Advance

Computing Conference, 827–832.

[32] Sood, A., S. Aggarwal (2011). Crossroads in

classification: comparison and analysis of fuzzy and

neuro-fuzzy techniques, International Journal of

Computer Appli-cations 24 (2), 13–17

[33] Suchman, E. A. (1967). Evaluation Research: Principles

and practice in public service and social action programs.

New York: Russel.

[34] Sudheer, Ch., S. Mathur (2012), Modeling uncertainty

analysis in flow and solutetransport model using adaptive

neuro fuzzy inference system and particleswarm

optimization, KSCE Journal of Civil Engineering 14 (6),

941–951.

[35] Taylan, O., B. Karagozoglu (2009). An adaptive neuro-

fuzzy model for prediction ofstudent’s academic

performance, Computers & Industrial Engineering 57 (3),

732–741.

[36] Whitefield, A., Wilson, F. & Dowell, J. (1991). A

framework for human factors evaluation. Behaviour and

Information Technology, 10, 65–79.

[37] Zhou, Z. (2009). Evaluating Websites Using a Practical

Quality Model.

[38] Zulkefli Mansor , Zarinah Mohd Kasirun, Saadiah Yahya,

Noor Habibah Arshad (2012) International Journal of

Computer Science Issues, 9(3),

