
 

 

 

Page 186 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 8, July 2016 

 

ISSN: 2394-4404 

A Graph Model Object Oriented Database For Data Mining 
 

 

 

 

 

 

 

Onu Fergus U.  

Anujeonye Nneamaka N.  

Nwanze Maureen N. 

Department of Computer Science,  

Ebonyi State University, Abakaliki – Nigeria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION 

 

STORAGE Optimization techniques, virtualization and 

BIG data in recent times became imperative with the need to 

aid proper and effective storage for large amount of data 

generated today. As researchers and software-designers sought 

better techniques to achieve these, the exponential, continued 

rapid growth of data in various types/forms today – beckons 

on the need for efficient frameworks that proffers dependable 

solutions to curb such data explosion and help store such large 

amounts of data (Bloom and Zdonik, 1987). Data compression 

techniques, has its corresponding issues that made possible the 

pursuance of more efficient means to curb such growth. But, 

data is stored mainly via one-of-two means: file-based system 

and database system (Satesh and Patel, 2009). 

This study was motivated by:  

 users need to extend Relational Database Management 

System (RDBMS) so as to capture variants of data types,  

 search and classification of data in large databases can be 

burdensome as users are often stuck with the option of 

what database model and design to use in their object 

oriented programming (OOP) application,  

 user seek better means to implement in their application 

in the event that a drastic change in data type(s) originally 

modeled from outset will automatically demand a 

corresponding change in database structure, model used 

and implemented by the application at run time, and  

 difficulties involved in supporting an OOP concepts via 

an OOP application with RDBMS. 

First issue is resolved by seeking an appropriate database 

model to use, and for this study, we have sought the use of 

relational database extended with object-oriented concepts to 

yield a hybrid (graph) model (as in section II). Also the search 

for data in very large databases (or as the database grows) can 

be quite frustrating and a herculean task. Thus, we model the 

use of descriptive mining technique for large data, so that data 

are appropriately classified and displayed on demand (as 

resolved in Section II). The issue of what database schema and 

query to implement by organizations (and other users) in their 

application so that a drastic change in the data type and format 

in use, will not automatically demand a corresponding change 

in the database structure and model used. To resolve this, the 

study advances the framework as proposed in Section III. 

Abstract: The increased complexity of software as users clamors for more user-defined functionality, now compels 

database modelers to refocus their design problems. The phenomenon caused a paradigm shift from just database design 

to the overall architecture of the database. Through a critical and detailed study of materials from secondary sources, this 

paper presented the use of relational database models extended with object-oriented concepts to yield a hybrid graph 

model and as well the use of descriptive mining technique for large data, so that data are appropriately classified and 

displayed on demand during a search. With this technique, software developers, database designers, programmers and 

software/database architects would achieve robust, flexible and adaptable model frameworks for software projects. These 

have been reckoned with as the key factors for the success or consequently, failure of many software projects. 

 

Keywords: Database Model, Object Oriented Concepts, Graph Model, Data Mining, Relational Data Model 

 



 

 

 

Page 187 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 8, July 2016 

 

ISSN: 2394-4404 

II. LITERATURE REVIEW 

 

A. DATABASE AND DATA STORAGE 

 

A permanent way to store data on a computer is via files. 

An organisation uses various applications, each manipulates 

data in files and in various formats. Each file stored 

(irrespective of its name and extension) is achieved via a file-

based system, which allows data manipulated to be stored in a 

file. The issues inherent in the file-system includes: integrity, 

isolation, redundancy, security, format inconsistency and 

concurrency access issues (Watt and Eng, 2013). These 

difficulties arising from a single file-based system has 

necessitated the need for development and growth of a new 

approach to store data; Thus, the development of a new model 

called the database model (Bloom and Zdonik, 1987). 

A database is a shared collection of related data that 

support the activities of a particular organization. It is a 

repository of data, which defined once – is accessed by 

various users. Its features include: (a) it represents aspects of, 

or a collection of elements (facts) of real-world data, (b) it is 

logical, coherent and consistent, (c) it is built, designed and 

populated with data for a specific task, (d) each item is stored 

in a field, which are populated to make up a record, and (f) a 

combination of fields (and records) define its table, and the 

table-structure. Thus, we redefine the database as a system that 

contain table(s) that are housed within a database management 

system (DBMS). The DBMS is a collection of programs that 

enable users to create, maintain and utilize full controlled 

access to databases. The primary goal of a DBMS is to 

provide an environment that is both convenient and efficient 

for users to manipulate, retrieve and store information (Watt 

and Eng, 2013; Ojugo et al,). 

DBMS provides one/more models whose optimal 

structure on which it stores and manipulates data, depends on 

its natural organization requirement and application's data, 

which include reliability, rate of transaction, maintainability, 

scalability and cost (Codd, 1970). DBMS are built around a 

data-model and it is possible for DBMS to offer support for 

more than a model. Also, most DBMS offer users some level 

of control to tune its physical structure – since these choices 

when made, creates a significant effect on its performance 

(Conrick, 2006). 

 

B. DATA MODELS 

 

A database model determines the logical structure of how 

its physical data is stored, organized and manipulated on 

storage (primary and secondary) media. It defines the set of 

operations that can be performed on the data. For example, the 

relational model (a popular data models) defines operation 

such as select (project) and join. Though, the operations may 

not be explicit in a particular query language, they are 

foundations on which a query language is built. There are 

various logical database models to include (Robie and Bartel, 

2013; Conrick, 2006): 

 Hierarchical Model organizes data as tree-structure with 

single parent for each record. It was widely used in early 

mainframe IBM Information Management System; But, 

now describes the XML structure. It allows one-to-many 

relations of two data types, and efficient to describe many 

relationships such as table of contents, nested loops, 

sorted data and ordering of paragraphs. The hierarchy is 

used as physical order of records in storage. Access to 

record is by navigating downward via pointers combined 

with sequential access. This makes it inefficient for some 

database operations when full path (as opposed to upward 

link and sort field) is not included for each record. Such 

limitations were compensated for in later IMS versions by 

additional logical hierarchies imposed on its base physical 

hierarchy (Zhuge, 2008; Date, 1999). 

 Network Model extends the hierarchical model via many-

to-many relation of multiple parents to define CODASYL 

specification. It organizes data via two concepts: records 

and sets. Records have fields hierarchically organized as 

in COBOL; And sets define record one-to-many relation: 

one owner, many members. A record may be an owner in 

a number of sets, and a member can be in any number of 

sets. A set consists of circular linked lists such that one 

record type (a set owner or parent) can appear once in 

each circle; while, a second record type (its subordinate or 

child) can appear multiple times in each circle. This 

establishes hierarchy between any two record types. Thus 

all sets comprise a general directed-graph (ownership 

defines direction) or network construct. Access to records 

is either sequential (in each record type), or by navigation 

in circular linked lists. This model represents redundancy 

in data efficiently than hierarchical model. There can be 

more than one path from an ancestor to a descendant. The 

program maintains a current position as it navigates from 

one record to another following all relations the record 

participates in. Records are located via key values. Model 

uses set relations of pointers that directly address location 

of a record. It yields excellent retrieval performance at the 

expense of other operations such as database loading and 

reorganization. Example is Cullinet's IDMS (Codd, 1970). 

 Relational Model – Codd (1970) introduced it as a 

mathematical model to make DBMS more independent of 

particular application via predicate logic and set theory. It 

is based on 3-key feats: relations, attributes, and domains. 

A relation is a table with columns (called attributes) and 

rows. Domain is set of values its attributes are allowed to 

take. Its uses a table: data about an entity (e.g., employee 

record) is presented in its rows and columns. The columns 

are various attributes of an entity such as employee name, 

address or phone number etc; while, row is an instance of 

the entity (specific employee) – to represent the relation. 

The „relation‟ refers to various tables. Each tuple in the 

table represents various attributes of an employee; And all 

relations (tables) must adhere to basic rules that qualify it 

as relations, which includes: (a) ordering of the column is 

immaterial, (b) there cannot be identical rows in a table, 

and (c) each tuple contains single value for each attribute 

(Codd, 1970). Its strength is that, a value input in two 

different records (of same or different tables) is a relation 

between the two records. To enforce integrity, relations 

among records are defined by identifying a parent-child 

relation characterized via cardinality (1:1, (0)1:M, M:M).  

 Tables can have single or set of attribute keys to uniquely 

identify each tuple in a table (Zhuge, 2008). A primary 



 

 

 

Page 188 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 8, July 2016 

 

ISSN: 2394-4404 

key uniquely identifies a row in a table and is commonly 

used to join data from two/more tables. Keys help with 

indexing to facilitate fast retrieval of data from large 

tables. A column can be a key, or multiple columns are 

grouped together into compound key. Keys can be 

defined at any time. A key that has an external, real-world 

meaning (person's name, book ISBN, or serial number) is 

called a natural key. In practice, most databases have both 

generated and natural keys (generated keys can be used 

internally to create links between rows that cannot break, 

while natural keys are used for searches and integration 

with other databases). Most common query language with 

RDB is Structured Query Language (Okonta et al, 2015). 

 Object-Oriented Model – uses the concept of objects to 

avoid object-relational impedance mismatch, an overhead 

of converting data between its representation in database 

(as rows in tables) and its representation in the application 

program (objects); Or with data-types used in a particular 

application that is directly defined in database that allows 

database to enforce same data integrity invariants. Object 

database (OODB) adapt encapsulation and polymorphism 

into databases by allowing objects that are manipulated by 

the program to be persistent via addition of queries (since 

traditional programming languages do not have the ability 

to find objects based on their data content). OODB model 

is based on objects with a structure that combine related 

code and data – as defined in its class declaration. The 

basic feats of objects are: (a) encapsulation allows codes 

and data to be packed together as an object so that its 

implementation is hidden from program, (b) inheritance 

allows new class to be built using code and data declared 

in another, and it allows common feats of a set of classes 

to be expressed in its base class, and code of related class, 

and lastly, (c) polymorphism allows us to create instances 

of an object from its class. Each object has its identity, 

which does not depend on values it contains. The object‟s 

address is its identity, and pointer references are then used 

to establish relations among objects so that its container 

classes are created as many-to-one relation (Robie and 

Bartels, 2013). OODB define a database via its language 

and allow full programming capabilities and traditional 

query facilities to be available to users. It suffers 

standardization as it has not been used well enough to 

ensure interoperability. OODB success are in many 

applications such as engineering and molecular biology; 

Rather, than commercial purpose. An alternative to 

translate between OODB and RDB is the use of object-

relational mapping (ORM) library (Bagui, 2003).  

 

C. RELATIONAL VERSUS OBJECT-ORIENTED DBMS 

 

Databases, regardless of structure are problem-specific 

and aim to offer a uniform framework for what is now an 

accepted solution for efficient storage and retrieval of large 

volumes of data (Fong, 1997). Many formats have been 

presented; But, RDBMS has been the most adopted over time. 

It uses a table-based structure for static components to 

organize data, and can handle simple predefined data-types. 

Issue(s) however, arise when it needs to deal with complex 

data-types, user-defined data and/or multimedia data (Leavit, 

2000) – which implies that RDBMS fails to handle complex 

data systems (Alam and Wasan, 2006) as its semantics are left 

unexplored within many relationships that cannot be extracted 

without the users‟ help (Satesh and Patel, 2009). 

In an attempt to use RDBMS technology in data 

processing activities like computer aided manufacturing and 

design, web-mining, knowledge-based systems, software 

engineering and multimedia systems – OODBMSs were 

adopted by modelers and database czars in many real-time 

applications to evade such shortcomings in RDBMS (Bagui, 

2003). This has further imploded a paradigm shift from 

RDBMS to OODBMS, and finally to agent-based database 

systems. This shift has been necessitated by the need to 

perform complex manipulations on database systems yielding 

a new generation of hybrid database systems that use one or 

more concepts with another generation of database system 

whose requirement cum heuristic is better satisfied by 

OODBMS and such hybrids (Satesh and Patel, 2009). To the 

rescue, is Object-Oriented database (OODBMS) – whose 

structure is based on the concept of objects using fets such 

abstraction, inheritance, polymorphism etc. These allow it to 

use the abovementioned object-model to capture the many 

complexities and semantics of data (Fong, 1997). Studies and 

organizations are now implementing OODBMS as means to 

resolve issues of data storage, retrieval and processing (Nunn-

Clark et al, 2003). The major strength of OODB is its ability 

to handle applications with complex, interrelated data (Alam 

and Wasan, 2006). Object-oriented DBMSs were necessitated 

by defects in the RDBMS and its inability to meet processing 

requirements in some real-time applications.  

 

D. THE HYBRID DATABASE FRAMEWORK 

 

There are cases for which OODBMS are quite inefficient 

to compete in the same task as its RDBMS counterparts. 

Various applications have been designed around RDBMS and 

studies prove that it is quite difficult (if not impossible) to 

move off RDBMS completely. Hybrids are created by 

integrating OOP concepts into existing RDBMSs. This 

exploits RDBMS feats merged with OOP concepts (Satesh 

and Patel, 2009) via graph model. The model adopts the 

navigation system to provide fast search and movement across 

the network of objects using an object identifier as smart 

pointers to relate to the objects (Date, 1999; Codd, 1970). This 

hybrid will offer a more general data model by using objects 

to enhance RDBMS and incorporates relation not constrained 

by Codd's concept (which require that all data in database 

must be cast explicitly in terms of values in relations (Conrick, 

2006). We model data to be represented via a digraph with 

trees on the nodes. Thus, the database seeks to extend 

RDBMS with non-relational features (Zhuge, 2008). 

 

E. DATA MINING TECHNOLOGY AND HEURISTICS 

 

Data stored in databases possess valuable hidden 

knowledge, which can be engaged in fruitful decision making 

processes. It makes imperative the need to develop methods 

for extracting knowledge from such hidden data. Of the 

numerous methods proposed, data mining has been 

successfully used in this task. Data mining employs pattern 



 

 

 

Page 189 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 8, July 2016 

 

ISSN: 2394-4404 

recognition feats with statistical and mathematical techniques 

in discovering meaningful new correlations, patterns and 

trends by analyzing large amounts of data stored in the 

repositories (Seifert, 2004). Data mining has made impact in 

many applications to include management, web mining, 

marketing, customer relations, crime analysis, engineering, 

medicine, prediction, and mobile computing to mention a few 

(Chen et al, 2005; Li, Yang and Zhou, 2008). Data mining 

tasks can be classified into two: Descriptive- and Predictive-

mining (Satesh and Patel, 2009). 

Descriptive mining extracts vital characteristics and/or 

feats of data from databases. Examples are clustering, 

Association Rule Mining and Sequential mining; While 

Predictive mining derives hidden patterns and trends from data 

to make decisive predictions. Predictive mining techniques 

consist of a series of tasks such as classification, regression 

and deviation detection (Han et al, 2001; Coenen et al, 2004). 

An important tasks in data mining is classification, which aims 

to find a valuable set of models that are self-descriptive and 

distinguishable data classes or concepts, to predict set of 

classes with an unknown class label (Zhong, Fu and Zhou, 

2006; Waiyamai et al, 2004). In transportation network, all 

highways with same structural and behavioral properties can 

be classified as a class highway (Shahrabil and Kainz, 1993). 

All forms of data mining, classification is used in applications 

such as credit approval, product marketing, and medical 

diagnosis (Kamber et al, 1997). So many techniques such as 

decision trees, neural networks, nearest neighbor methods and 

rough set-based methods enable the creation of classification 

models (Al-Hegami, 2007). Regardless of its potential 

effectiveness and that data mining appreciably enhances data 

analysis, the technology requires great effort is to be taken to 

integrate data mining technology with database system 

(Homan and Kovac, 2009).  

 

F. THE GRAPH SYSTEM 

 

A graph-structure consists of a set of nodes or vertices 

that are connected together by a corresponding set of edges, 

links or relationships. It yields a system that has been adapted 

in many disciplines (such as mathematics, computing, 

sociology, biology, engineering etc) to represent relationship 

amongst a set of interactions nodes (actors or agents) in such a 

system. Nodes are represented as actor/agents; while its 

corresponding relationships are represented via edges or 

linked arcs – so that the system in general, studies how these 

agents, their relations and interaction (represented via the 

formation of node clusters and/or isolation) creates an effect 

that ripples throughout the system (Ojugo et al, 2015). 

The graph plays a powerful role as networks to bridge 

local features that are existent within these actors or agents – 

so that they can blossom into a global (graph) pattern that 

helps users explain how effects of classification via clusters 

and isolation. Each agent plays a significant structural role that 

helps shape the graph‟s evolution in time, and they adapt 

themselves to various dimensions (as need arises) via 

relationships that determines how data flows in a system 

(Ojugo et al, 2014).  

Mathematically, a graph is an abstract representation of a 

set of object that are connected by links. These interconnected 

objects represent vertices; while the links that connects a pair 

of vertices are edges (Izquierdo and Hanneman, 2008) denoted 

as G = (V,E). Each node x  V with edges m  E. Its edges 

indicates the direction of data flow: which is grouped into 

undirected and directed. A direction can either be self-linked 

(loop), single- or multi-link. Each node has a set of neighbors 

to which it is either linked to, or is isolated from. The links can 

be weak, strong or isolated, in terms of relations status as 

measured through dyads D (West, 2001). These links or edges 

describe what relations exist between actors. Graph of single 

relation among its nodes is simplex graph; while graphs with 

multiple relations are multiplex graphs (which are analyzed 

using various graph techniques/tools). An undirected relation 

implies co-occurrence, co-presence or bonded-tie where actors 

are of same level (such as siblings relations), or a directed 

relation with a superior and a subordinate model where data 

originate from a source and reaches target actor via a directed 

arrow (such as parent/child, employer/employee). If directed 

edge is reciprocated, it implies that both nodes are source and 

target at any given time (represented by bi-directional arrow). 

Some edges may be weighted using techniques to indicate the 

cost or penalty of movement from one actor to another actor 

(Diestel, 2005). 

 

G. GRAPH MODELS AND TOPOLOGY 

 

Modeling is an abstracting activity motivated by a 

particular need or goal that sees to help bring specific facets of 

an unruly domain into a space that can help us structure and 

manipulate them. Since there are no natural representations of 

the world the way it really is – we then employ purposeful 

selections, abstractions, and simplifications, some of which 

are more useful than others for satisfying a particular goal. A 

difference between graphDB and other modeling techniques, 

however, is the close affinity between the logical and physical 

models. RDBMS require developers to deviate from natural 

language representation of the domain: (a) cajoling our 

representation into a logical model, and (b) forcing it into a 

physical model. This transformation introduces semantic 

dissonance between our conceptualization of the world and 

database‟s instantiation of that model. But, GraphDB shrinks 

this gap considerably as its models naturally fits with the way 

we tend to abstract the salient details from a domain using 

circles and boxes, and then describe the connections between 

these things by joining them with arrows (Robinson, Webber 

and Eifren, 2013). 

GraphDB technologies are „whiteboard friendly‟ and 

typical whiteboard view of a problem is a graph – since what 

users sketch in their creative and analytical modes maps 

closely to the data model implemented inside the GraphDB. 

These models also reduce the impedance mismatch between 

analysis and implementation that has plagued RDBMS and 

OODBMS over time. An interesting feat that continues to 

draw developers to its use is in how actors in the GraphDB 

communicate, how actors relate, and the facts that they also 

clearly communicate the kinds of questions pertinent in the 

domain. 

Graphs are basically divided into three (3) models namely 

(Ojugo et al, 12015b): 



 

 

 

Page 190 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 8, July 2016 

 

ISSN: 2394-4404 

 ERDOS-RENYL MODEL describes a random graph with 

nodes n connected to each other randomly, selecting from 

edges. Its grows via probability distribution of nodes 

given by, following the Bernoulli Degree where k is 

average connectivity in G. If probability P is small, then 

G has many isolated components (subgraph or nodes). 

But, if as large, then almost all nodes are connected 

(Pavlopoulos et al, 2011). 

 WATTS-STROGATZ model introduced in 1999, describes 

a small-world graph model that deviates from the classical 

concept of random networks. Each node is sequentially 

inserted to the graph and linked to an existing node based 

on a probability that is proportional to its current degree 

in hierarchy. Graph grows via power-law distribution with 

probability P of the nodes with degree k proportional to 

P(k) = k
-
,   = 3 (Watts and Strogatz, 1998; Pavlopoulos 

et al, 2011). The graph is characterized and influenced by: 

(a) small path length (α) that defines the average/shortest 

path between a node pair and determines probability of 

node connected given a number of common neighbors. 

This property controls extent of a graph being filled with 

sparsely or densely connected components so that as α 

nears infinity, the graph becomes more a random graph), 

and (b) large clustering coefficient (q) is the average 

fraction of pairs of neighbors of a node that is connected 

to another. This feat determines probability of an edge to 

reconnect to another node in the graph. If the value of q is 

small, it denotes high clustering coefficient and large 

average path length, which leads G to become a random 

graphs; Else, as q tends to 0, it becomes more of a small-

world graph (Schnettler, 2009 and Ojugo et al, 2014). 

 SCALE-FREE GRAPHS describes Barabasi and Albert 

model of 1998. This graph reveals data about its dynamics 

from an evolutionary point, and like the small-world 

topology, it deviates from the classical random networks 

based on two feats namely: growth and preferential 

attachment. Its core idea hinges on the fact that it 

considers a network as an evolving entity so that it models 

the dynamics of network growth. The simple BA model is 

well-known and described by Albert and Barabasi (2002): 

Given a positive integer m in an initial network Go, 

network evolves based on these rules in discrete time-

process as thus: 

 GROWTH: At each time j, a new node of degree m is 

added to the graph or network. 

 PREFERENTIAL ATTACHMENT: For a node x in 

the graph, the probability a new node connects is 

proportional to the degree of x. We express Gj for the 

network at time j and P(x,y) for the probability that 

the new node added at time k is linked to x in Gj-1 as 

in Eq. 1: 

Each node inserted is sequentially linked to existing one 

via probability proportional to the existing node‟s current 

degree, in hierarchical fashion. This model generates a graph 

whose degree of distribution, asymptotically tends to a power 

law so that a node x of degree k is proportional to P(k) = k
-
 

and 2 <  < +∞ (Albert and Barabasi, 2002; Pastor-Satorras 

and Vespignani, 2002; Pavlopoulos et al, 2011). Its variants as 

seem to follow power law degree such that if  ≤ 3, it yields a 

small world graph. But, if  ≥ 3, it yields scale-free graph and 

evolves with distribution of 2 <  < +∞ (Barabasi and Albert, 

1999; Dorogovtsev, Mendes and Samukhin, 2000). 

 

H. THE GRAPH DATABASE (GRAPHDB) MODEL AND 

STRUCTURE 

 

A GraphDB is an online database system with Create, 

Read, Update, and Delete (CRUD) techniques used to expose 

the graph model and generally used for online-transaction 

(OLTP) system. It is normally optimized for transactional 

performance and engineered with transaction integrity and 

operational availability in mind (Barmpis and Kolovos, 2014). 

Two feats to be explored in using GraphDBs technologies 

include: 

 Storage: Most GraphDBs uses the native graph storage, 

optimized and designed for storing and managing graphs; 

while some serialize its data into a RDBMS, OODBMS or 

some other general-purpose data store.  

 Processing: Some GraphDBs use index-free adjacency so 

that connected nodes physically point to each other in the 

database. Any database behaves like a graphDB (exposes 

a graph data model via CRUD operations) qualifies as 

graphDB database. This implies a significant performance 

advantages of index-free adjacency, and thus, use the term 

native graph processing to describe graph databases that 

leverage index-free adjacency. 

Figure 1: Many-to-Many relationship for 2-data structure 

The structure diagram is a schema representing the design 

of a network database consisting of boxes (which represents 

the record types) and lines (which represents the links). Owing 

from the model types as mentioned above, consider the E-R 

Graph consisting of two entity sets, client and account data, 

related via a binary, many-to-many relationship depositor with 

no descriptive attributes. Diagram specifies that a client can 

have several accounts, and that an account can also belong to 

several different clients. Record type client is the entity set 

client with includes 3-fields: client_name, client_address and 

client_phone. Similarly, account is record type representing an 

entity set with 3-fields: bank, account_number and balance as:  

type client = record 

 client_name: string; 

 client_address: string; 

 client_phone: integer; 

  end 
type account = record 

bank: string; 

account_number: string; 

balance: float; 

end 

Name Address Phone 

Ajani Emma FecoTech, Asaba 0803-715-2027 

Eboka Andrew FecoTech, Asaba 0802-345-1209 

8037152027 

Eboka FecoTech Asaba 

Ajani FecoTech Asaba 

Obi PTI Warri 

Onu EBSU Abakiliki 

ACB 071X

w 

37908:03 

ZTBh  200X 25490:09 

FCM

B 

056X 17902:01 

GTB 010X 56098:92 

PHB 032X 78908:03 

FBN 102X 35490:09 

8037152027 

8037152027 

8037152027 



 

 

 

Page 191 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 8, July 2016 

 

ISSN: 2394-4404 

Obi Isioma FecoTech Asaba 0803-450-2313 

Onu Joseph abakailki 0803-420-9012 

Table 1: Client 

Bank Account No Balance 

ZTB 2007176543 25490:09 

ACB 0715290341 37908:23 

FCM 0562304325 17902:01 

GTB 0109982670 56098:92 

Table 2: Account 

The relation is replaced with link depositor is a a many-

to-many relationship for which: (a) the relation depositor is a 

one-to-many from client-to-account such that depositor points 

from account-to-client record(s), and (b) relation depositor is 

one-to-one if link depositor has two arrows where one points 

from client-to-account record, and other points from account-

to-client record type. Thus, for a many-to-many relation, the 

depositor relation will just show lines to link depositor to both 

record types (account and client) graphically represented as: 

Figure 1b: Sample Database diagrams 

 
Figure 2: a One-to-Many (1:M) Relation for the 2-data 

structure Diagram 

Figure 3: a One-to-One (1:1) Relation for the 2-data structure 

Diagram 

The GraphDB schema described above can contain a 

number of client records linked to a number of account 

records as in fig 1b. With a many-to-many relationship, it 

shows that Obi and Onu both has 2-accounts each.  

 

I. PROPERTY OF GRAPHDB 

 

A GraphDB has the following properties namely (Angles 

and Gutierrez, 2008; DeVirgillio et al, 2014): 

 GraphDB initializes nodes as documents to store feats in 

the form of arbitrary key-value pairs. The keys are strings 

and the values are arbitrary data types. 

 Relationships connect and structure its nodes with label 

and direction so that each GraphDB has start/end node 

with no dangling relationships. A relation‟s direction and 

label together, adds semantic clarity to structure of nodes. 

 Relationships can also have properties – which is useful 

in providing additional metadata to a graph algorithms, 

adding additional semantics to relations (including quality 

and weight), and for constraining queries at runtime. 

 

J. RATIONALE FOR THE CHOICE OF GRAPH DB 

 

 Modeling: Any task can be modeled as graph. And though 

the GraphDB provides a powerful, novel data modeling 

technique; It does not account that this in itself provide 

sufficient justification to replace a well-established, well-

understood data platform. There must be an immediate 

and significant practical benefit.  

 Motivation: GraphDBs is motivated with the existence of 

use cases and data patterns whose performance improves 

by one/more orders of magnitude when implemented, and 

whose latency is much lower compared to aggregates in 

batch processing. It offers performance benefit, that are 

extremely flexible and a mode of delivery that is aligned 

with today‟s agile software delivery practices as used in 

OOP and new paradigm of Agent-based programming. 

 Performance: Its performance increase when dealing with 

connected data allows the integration with OODBMS, 

RDMS and NOSQL. It creates the needed hybrid that 

allow migration flexibility between these database models 

such that in cases where join-intensive query performance 

deteriorates as dataset gets bigger, the GraphDB tends to 

retain a relatively constant performance – because queries 

are localized to a portion of the graph. Thus, at run time, 

each query is proportional only to the size of the part of 

the graph traversed to satisfy that query, rather than the 

size of the overall graph.  

 Flexibility: With developers and data architects, GraphDB 

seek to connect data as the application domain dictates (so 

that its schema and structure emerge in tandem with our 

growing understanding of the problem space as well as 

suits the real data and intricacies of the data) rather than 

being imposed upfront. GraphDB addresses this via its 

model and accommodates business needs in a way that 

enables IT to move at the speed of business. Graphs are 

naturally additive, allowing users to add new relations, 

new nodes and new subgraphs (components) to existing 

structure without disturbing existing queries and functions 

of application. Such feedback cum positive implications 

increase developer‟s productivity and reduces project risk. 

This flexibility implies that developers do not have to 

model the application in exhaustive detail ahead of time – 

which will consequently require a corresponding change 

as business requirements changes. The additive nature of 

graphs also means there are fewer migrations, which in 

turn reduces maintenance overhead and risk. 

 Agility: Gives a developer the ability to evolve our data 

model in step in tandem with our OOP application, using 

a technology aligned to today‟s incremental and iterative 

software delivery practices. Modern GraphDB equips the 

developers with abilities of frictionless development and 

Client 

Employee_Name 

Employee_Addre

ss 

Employee_Phone 

Account 

Bank 

Account_Number 

Balance  

deposi
tor 

Client 

Employee_Name 

Employee_Address 

Employee_Phone 

Account 

Bank 

Account_Number 

Balance  

depositor 

Access_Date 



 

 

 

Page 192 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 8, July 2016 

 

ISSN: 2394-4404 

graceful systems maintenance. In particular, the schema-

free nature of GraphDB coupled with its API (application 

programming interface) and query – empowers users to 

evolve in a controlled manner. Also the GraphDB lacks 

schema-oriented data governance mechanisms in RDBMs 

and other data models as it calls for a more visible and 

actionable kind of governance.  The model queries assert 

biz rules that depend upon the graph, which aligns well 

with today‟s agile and test-driven software development 

practices, allowing graph database–backed applications to 

evolve in step with changing business environments.  

 

 

III. PROPOSED GRAPH FRAMEWORK 

 

A. MODELING THE DATABASE 

 

RDBMS and OOPs have different programming 

paradigms that are not very compatible. Many OOPs do not 

have any standard method for accessing data type information 

at run time. Thus, many developers seek means to parlay these 

feats via their application‟s interface design, which is specific 

of the database model adapted. Our hybrid is achieved and 

modeled via one-of-this strategies: (Satesh and Patel, 2009; 

Robie and Bartels, 2013): 

 Model the Database in your Application Classes – A user 

can build an OO-application around a relational model, 

where each object must be instructed on how to retrieve 

and store data from the database. This strategy requires 

extra programming in every class, and does not result in 

artistic clean program design (for details of the database 

as implemented must reflect in every class) and structure 

of data for the OOP is not closely related to the tables of 

relational databases. Thus, this often renders the infused 

code, non-trivial. 

 Model Application in Database – Here, a user reflects the 

object model in a RDMS. This strategy is much harder the 

previous one because RDBs have limited data types, and 

it requires significant coding in OOP application as many 

aspects of objects cannot be expressed directly in RDB 

(e.g. inheritance, pointer, polymorphism, collections). 

 Row-Orientation Interface – In case the application only 

needs simple data-types with not have many relationships 

– user can limit his/her interfaces to row-oriented access. 

This greatly simplifies development. In many databases, it 

is useful to define views that present data to the program 

in a convenient way. Some applications need to store 

complex data; But, it then exchanges only simple data 

with RDB. In such cases, it is imperative and wise to use 

an OODBMS for its data and use simple tables and views 

to share data with RDB. 

 

B. THE EXPERIMENTAL GRAPHDB 

 

Suppose our GraphDB as above includes a relationship 

with descriptive attributes – its E-R diagram transformation is 

more complicated. A link cannot contain any data value, so a 

new record type is created to link what needs to be 

established. If, we derive the attribute access date to depositor 

relationship (to indicate the most recent time a client accessed 

an account) – then, our new derived E-R diagram transforms 

to: 

Figure 4: Adding the Access_Date feat to E-R Diagram 

Eventually, if we add some other attributes that seeks to 

find data about a particular user whose account is domiciled in 

one branc and can also be accessed from other parts of the 

State and/or Country – then we implore data mining 

techniques with queries that uses the GraphDB to access the 

record in want. 

 

 

IV. DISCUSSION AND FINDINGS 

 

The GraphDB methodology allows users to develop a 

database system that acts as a backend for most applications, 

which perform consistently better in its data manipulation and 

queries than other models and hybrids. The model drastically 

reduces the space overhead, the time complexity of the overall 

process and its search/manipulation of data with respect to any 

other competitor strategy that spends much time traversing a 

large number of edges. Variants (version) of the GraphDB 

have been successfully implemented by other studies such as 

Angles and Gutierrez (2008), De Virgilio et al, (2013). These 

studies also agreed that significant result was shown in the 

speed-up between some strategies.  

The concept of storing and managing graph-data natively 

is quite old and has been recently re-born with the advent of 

the Semantic Web and other emerging application domains, 

such as social networks and bioinformatics. This new interest 

has led to the development of a number of GraphDBs that are 

now becoming quite popular. In spite of this, current 

approaches rely on best practices and guidelines based on 

typical design patterns, published by practitioners in blogs or 

only suited for specific systems (a design pattern based on join 

operations that need to be performed over the database). But, 

assumptions on the way in which the database under 

development is accessed and many other approach relies only 

on the knowledge of conceptual constraints that can be defined 

with the ER model as mentioned in Section II. Also, GraphDB 

provides a system-independent intermediate representation 

that makes it suitable for any application to integrate. The 

many feats of GraphDB can allow effective and efficient 

migration of data from a relational to GraphDB. In this work, 

we consider a different scenario where the database needs to 

be built from scratch. 

 

 

 

 

Access_Date 

client_Date 

account_Date 

Account 

Bank Acct-No Balance 

Client 

Name Phone 

Number 
Address 



 

 

 

Page 193 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 8, July 2016 

 

ISSN: 2394-4404 

V. CONCLUSION 

 

Various mechanisms are available in the GraphDB model 

for updating records in the database, which allow users to 

create and delete records (via the store and erase operations), 

as well as the modification (via the modify operation) of the 

content of existing records. The use of connect, disconnect and 

reconnect operations helps to insert or remove records from a 

particular set occurrence. So, when new set is defined, the user 

must specify how member records are to be inserted, and 

under what conditions it is moved from one set occurrence to 

another. Thus, a newly created member record can be added to 

a set occurrence either explicitly or implicitly. This distinction 

is specified at set-definition time via the insertion is statement 

with the manual and automatic insert-mode options. There are 

various restrictions on how and when a member record can be 

removed from a set occurrence into which it has been inserted 

previously. These restrictions are specified at set-definition 

time via the retention is statement with the fixed, mandatory, 

and an optional retention options. Implementation techniques 

for the GraphDB model exploit the restrictions of the model to 

allow the physical representation of GraphDB sets without the 

need for variable-length records. A GraphDB set is 

represented by one ring structure for each occurrence. 

 

 

REFERENCES 

 

[1] Alam, M and Wasam, S.K., (2006). Migration from 

Relational Database into Object Oriented Database, 

Journal of Computer Science, 2(10), pp. 781-784, 2006.  

[2] Albert, R and Barabasi, A., (2002). The statistical 

mechanics of complex networks, Reviews of Modern 

Physics, 74, pp47-97. 

[3] Al-Hegami, A.S., (2007). Classical and Incremental 

Classification in Data Mining Process, International 

Journal of Computer Science and Network Security, 7(2). 

[4] Angles, R and Gutierrez, C.,(2008). Survey of graph 

database models, ACM Computing Surveys, 40(1), pp 1 – 

12  

[5] Bagui, S., (2003). Achievements and Weaknesses of 

Object-Oriented Databases, J. of Object Technology, 2(4), 

pp. 29-41. 

[6] Barabasi, A.L and Albert, R., (1999). Emergence of 

scaling in random networks, Science, 286, pp509-512 

[7] Barmpis, K and Kolovos, D.S., (2014). Evaluation of 

Contemporary Graph Databases for efficient Persistence 

of Large-Scale Models, Journal of Object Technology, 

Association Internationale pour les Technologies Objets 

JOT 2014, Online at http://www.jot.fm. 

[8] Bloom, T and Zdonik, S., (1987). Issues in the design of 

object-oriented database programming languages, In 

Proceeding of ACM SIGPlan Notices, December 1987, 

[online]: 

https://www.researchgate.net/publication/221321149 

[9] Codd, E.F., (1970). A relational model of data for large 

shared data banks, Communications of the ACM, l(13), 

pp.377-387. 

[10] Coenen, F., Leng, P and Goulbourne. G., (2004). Tree 

Structures for Mining Association Rules, Journal of Data 

Mining and Knowledge Discovery, 15, pp. 391-398. 

[11] Conrick, M., (2006). Health informatics: transforming 

healthcare with technology”, Thomson, ISBN 0-17-

012731-1. 

[12] Date, C., (1999). When an extension is not an extension? 

Intelligent Enterprise, 22(8), pp 190-201 

[13] De Virgillio, R., Maccioni, A and Torlone, R., (2014). 

Model-driven design of graph databases, in E. Yu et al. 

(eds.): ER 2014, pp. 172–185, 2014, Springer 

International publishing Switzerland 2014 

[14] Diestel, R., (2005). Graph theory (3ed), Graduate text in 

Mathematics, 173, Springer-Verlag, ISBN: 3-540-26182-

6. 

[15] Dorogostev, S., Mendes, J and Samukhin, A., (2000). 

Structures of growing networks with preferential linking, 

Physical Review Letters, 85(21), pp4633-4636. 

[16] Fong, H.J., (1997). Relational databases with object 

oriented designs and implementation for modern 

applications, Databases, 51(2), pp133 – 145. 

[17] Han, J and Kamber, M., (2001). Data Mining: Concepts 

and Techniques, Morgan Kaufmann Publishers. 

[18] Homan, J.V and Kovac, P.J., (2009). A comparison of 

relational database model and the associative database 

model, Issues in Information System, 10(1), pp 208 – 213 

[19] Leavitt, N., (2000). Whatever Happened to Object-

Oriented Databases?, IEEE Computer Society, 33(8), pp. 

16-19 

[20] Li, L., Yang, B and Zhou, F., (2008). A framework for 

Object-Oriented Data Mining, Proceedings of 5th 

International Conference on Fuzzy Systems and 

Knowledge Discovery, 2, pp: 60-64.  

[21] Izquierdo, L.R and Hanneman, R.A., (2006). Introduction 

to formal analysis and social networks using mathematica, 

{online}: 

http://faculty.ucr.edu/.../mathematica_networks.pdf, last 

retrieved December 3, 2014.  

[22] Kamber, M., Winstone, L., Gong, W., Cheng, S and Han, 

J., (1997). Generalization and Decision Tree Induction: 

Efficient Classification in Data Mining, Proceedings of 

International Workshop Research Issues on Data 

Engineering, pp. 111-120, 7-8 April, Birmingham, UK.  

[23] Nunn-Clark, K., Hunt, L., Hooi, T and Gnanasekaraiyer, 

B., (2003). Problems of Storing Advanced Data 

Abstraction in Databases, In Proceedings of the First 

Australian Undergraduate Students‟ Computing 

Conference, pp. 59-64, 2003. 

[24] Ojugo, A.A., Ben-Iwhiwhu, E., Kekeje, D.O., Yerokun, 

M.O and Iyawa, I.J.B, (2014a). Malware propagation on 

time varying graphs, International Journal of Modern 

Education and Computer Science, 4(9), p24-37. 

[25] Ojugo, A.A., Ben-Iwhiwhu, E., Yoro, R.E and Chiemeke, 

S.C., (2014b). Decision diffusion predictor model for 

socialgraphs, 

http://www.researchgate.net/publications/261287430_Dec

ision_predictor_model_for_social_graphs.pdf,last 

retrieved July 2016.  

[26] Okonta, E.O., A.A. Ojugo., U. Wemembu and D. Ajani., 

(2015). Embedding quality functional deployment in 



 

 

 

Page 194 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 8, July 2016 

 

ISSN: 2394-4404 

software engineering development, West African Journal 

of Industrial and Academic Research, 10(1): 50-64. 

[27] Pastor-Satorras, R and Vespignani, A., (2002). Epidemics 

and immunization in scale-free networks. Handbook of 

Graphs and Networks: From the Genome to the Internet. 

[28] Pavlopoulos, G.A., Secrier, M., Moschopoulos, C.N., 

Soldatos, T.G., Kossida, S., Aerts, J., Schneider, R and 

Bagos, P., (2011) Using graph throy to analyze biological 

networks, BioData Mining, 4(10), 

http://www.biodatamining.org/contents/4/1/10.  

[29] Robie, J and Bartels, D., “A comparison between 

relational and object oriented databases for object 

oriented application development, White paper for Poet 

Software corporation, 800 - 950- 8845 

[30] Robinson, I., Webber, J and Eifrem, E., (2013). Graph 

databases, O‟Reilly publications, ISBN: 978-1-449-

35626-2. 

[31] Satesh, A and Patel, R., (2009). Use of object-oriented 

concepts in databases for effective mining, International 

Journal on Computer Science and Engineering, 1(3), 

pp206-216 

[32] Schnettler, S., (2009). A small world on feet of clay? A 

comparison of empirical small-world studies against best-

practice criteria, Social Networks, 31(3), p179-189, 

doi:10.1016/j.socnet.2008.12.005. 

[33] Seifert, J.W., (2004). Data Mining: An Overview, CRS 

Report for Congress. 

[34] Shahrabil, B.A and Kainz, W., (1993). Implementation 

Approach for Object-oriented Topographic Databases 

using Standard Tools," In Proceedings of Eleventh 

International Symposium on Computer-Assisted 

Cartography, pp. 103-112, 30 October-1 November, 

Tehran, Iran. 

[35] Waiyamai, K., Songsiri, C and Rakthanmanon, T., (2004). 

Object-Oriented Database Mining: Use of Object 

Oriented Concepts for Improving Data Classification 

Technique, Lecture Notes in Computer Science, 3036: pp 

303-309. 

[36] Watt, A and Eng, N., (2016). Database design – (2 Ed.), 

[online]: http://open.bccampus.ca, last accessed June 23 

2016. 

[37] Watts, D.J and Strogatz, S.H., (1998). Collective 

dynamics of small world networks, Nature, 393, pp440-

442 

[38] West, D.B., (2001). Introduction to graph theory (2ed), 

Upper Saddle River, Prentice Hall, ISBN: 0-13-014400-2 

[39] Zhong, J., Fu, Y and Zhou, J.L., (2006). A Classification 

Approach Based on Evolutionary Neural Networks, 

International Journal of Computational Intelligence 

Research, 2(1), pp. 72-75 

[40] Zhuge, H., (2008). The Web Resource Space Model, Web 

Information Systems Engineering and Internet 

Technologies Book Series 44. Springer. ISBN 978-0-387-

72771-4, 2008 

 


