
 

Page 230 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 5, May 2016 

 

ISSN: 2394-4404 

Evalution Study And Demonstration Of Openflow Overlay 

Application Interface Usage Using Autonetkit  
 

 

 

 

 

 

 

Kehinde Adebusuyi 

Hilary Ezea  

Intelligent Systems & Communication Networks Research Group, 

Department of Electrical and Electronic Engineering, 

Federal University Oye-Ekiti,  

Ikole-Campus, Nigeria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION 

 

Recently, Software Defined-Network – [SDN] controller 

has been identified by researchers as the enhancement to the 

de-facto legacy Internet Protocol networking architecture and 

a paradigm shift from rigid control and data Plane which the 

current next generation internet fabric is built on.   

The issue of management, troubleshooting and security 

are hard fought as manual configuration of several knobs are 

still great issue. Stefano et.al [1] proposed an Open Source 

Hybrid IP/SDN {oSHI} model which combines Quagga for 

OSPF routing and open vswitch for open flow based switching 

on Linux platform. In their experimental comparative study 

between the emulation on minimet and distributed SDN 

testbeds, Oshi was suitable for large scale data center as 

demonstrated by the authors in [2] and a methodology of 

reducing the route oscillations was suggested where the BGP 

sample transactions were observed at various outage time.  

The current demand for high speed at the backbone is a major 

driver for an efficient and reliable backbone that can deliver 

uninterrupted internet applications services such as on-line 

gaming, multimedia communication and transport networks 

services anywhere, anytime.  In a recent 5 year report by a 

major player in the telecommunication industry in the 

European region – () in September 2015, reveals that the 

future internet applications growth is forecasted to grow at 

70% rate. This is attributed to the development of a high speed 

backbone that is scalable to cater for the growing needs of the 

service providers and network operators. This paper evaluates 

the networking emulator networks in experimental support 

using Autonetkit Overlay Application. The remainder of this 

paper is arranged as follows: Section 1 gives us an overview 

of the Software-Defined Networks and the current need for an 

emulator to test SDN experimental ideas. Section 2 relates the 

introduction with the Motivation for Autonetkit Overlay 

applications. This section discusses the trend in Data 

Communications, the challenges in traditional Networking and 

the evolution of programmable networks. Section 3 is the 

continuation of section2 which gives a bird eye-view of the 

network model, algorithm for the architecture and framework 

of Autonetkit Overlay within the academia community. 

Section 4 is the comprehensive evaluation study to analysing 

issues related to the concept of Abstraction, the types of 

Abstraction. The prospect of a programming language in the 

NOS and a focus on Python as a high-quality programming 

language for this work and its application in measuring Large-

Abstract: We explain the notion of software-defined networking (SDN), whose southbound interface may be 

implemented by the OpenFlow emulation application such as Autonetkit. We evaluate the practical operation of 

Autonetkit and the Overlay application Interface Usage. We give an overview of existing OpenFlow-based Overlay 

applications and the proposed model with network graph. Finally, we point out model design choices for SDN inter-

domain routing using OpenFlow evaluation and discuss their performance implications.  

 

Keywords: Software Defined Network Interconnection, OpenFlow, Autonetkit 

 

 
 

 

 



 

Page 231 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 5, May 2016 

 

ISSN: 2394-4404 

Scale Networks.  Section 5 of our work concludes this paper 

which is another step towards extending the value proposition 

of Autonetkit Overlay on inter-domain level or multi-domain 

level. We propose a model to experiment and explore 

maximally redundant techniques for fast re-routing on the IP 

layer and the possibility of an autonomic approach to 

Managing Cognitive Hybrid Software defined Networks. The 

promises of Autonetkit Overlay uses network graphs within 

domains. 

 

 

II. BACKGROUND AND RELATED WORK 

 

We propose an emulation network that thrives on network 

graph creation using open source tools such as minimet. 

Quagga, Autonet kit, networkx, and programmable networks 

developed with python languages. …et .al [2] developed a 

model and emulation framework for BGP Evolution, in their 

model, Multi-domain SDN was proposed to be outsourced to 

an external contractor to provide inter-domain routing services 

facilitated through a Multi-As Network Controller.  

The need for a self-aware systems was justified by 

Gelenbe, E.[3] in his work on software-defined self-aware 

network proposed a Cognitive Packet Network (CPN) which 

is able to improve the quality of services at the Backbone 

Network. 

 

A. MOTIVATION FOR AUTONET KIT OVERLAY 

APPLICATION 

 

The main motivating factor for Autonet kit Overlay 

Application, is the ease of configuration in networks that 

eliminates poorly understood interaction between local 

policies, poor convergence and lack of appropriate 

information hiding, non-determinism and poor overload 

behaviour.  

Rather than an engineer doing all the horrible scripting, 

one of the motivation from SDNi is that of an obstructions on 

the industry part and it philosophical one of them is better 

programming instructions which our proposed model really 

drive and the mechanism to push those scripts out which 

makes thing horrible even though the API Push those scripts 

out. There is a bit of control being able to describe the network 

with high level to build what you want the network to look 

like. The management plane will handle separate 

responsibilities to fulfil the main conceptual idea of Software 

Defined Network. This SDN partitioning will secure each 

domain on its own thereby contributing to privacy across the 

network. 

These new issues drive the research on new routing 

methods. Our goal is to adhere to this imminent drivers in the 

software defined next-generation network experimental 

research domain as it appears as closely as possible by 

experimenting with Autonet kit to develop models. The 

Autonet kit in fig 1.0 consist of a Cisco Virtual Internet 

routing Lab (VIRL) with a user mode of LINUX running 

Quagga routing. It occupies a 32MB RAM size of three (3) 

virtual machines. 

 
Figure 1.0: Cisco Virtual Internet routing Lab (VIRL) 

 
Figure 2.0: Emulated Network with Autonet kit 

 

  

III. COMPREHENSIVE SURVEY: BOTTOM-UP 

APPROACH 

   

We consider a use case in measuring large-scale 

networks, where we can have two networks built on python 

scripts communicating with each other. Essentially the 

protocols running inside one network is slightly different from 

that of the other in another network and the protocols running 

between the borders  and configurations need to cooperate to 

include information such as business relationships. It is a lot of 

complexity once we start building them into bigger networks, 

so what we propose is a model to break the networks into 

smaller networks.  This is slightly small in terms of the bigger 

networks with 40 or 50 routers with plenty of networks on the 

internet.  We propose a model where the configurations of the 

devices with low level vendor specific syntax is utilized. This 

is similar to the work of ….. et. al where he discussed 

abstractions as a solution to the simulation of complex 

networks . He however proposed the breaking down of 

complex networks into smaller ones . This is essentially fairly 

similar between each devices but pretty tedious and takes time 

to repeat the process across different network devices. For 

router exchanging messages within the same network and 

different across the network. All these configurations is 

tedious, time consuming and boring and does not scale when 

across large networks. 

In term of trying to do the configurations [], one approach 

is to have a database push into templates and the problem 

becomes how do we specify these properties in the database 

because we have raised the abstractions and from typing into 

each devices, we can push it out into the network albeit getting 

the device level properties across the network is a big 

challenge. We start by looking at an idea of a simple network 



 

Page 232 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 5, May 2016 

 

ISSN: 2394-4404 

design where the networks are in autonomous systems as seen 

in figure 3.0 []. The AS1 

 
Figure 3.0 

 

A. APPLICATION USAGE 

 

Autonetkit 

 

B. NETWORK MODEL  

 

The figure 4.0 represents the schematic digaram of the 

overlay showing the input graphML with the loader which set 

the defaults for the compiler with input from various routing 

protocols to create the overlay for the device configurations 

module because the network is configured device by device. 

The overlay module is booked in the condensed graphs for the 

abstract network module level which is pushed out to the 

various devices and generate functions in Table 384884: We 

have graph attribute output from ibgp, ebgp which is pushed 

out to API Like netcomf , SNMP, 0nePK, saltstack, puppet,  

etc  

 
 

Figure 4.0: Autonet Kit Network model 

The input graph model G_in with individual inter and 

intra routing protocol (IBGP & EBGP) and the compiler 

computes the parameters for packet flows into the NIDB 

 

C. EBGP GRAPH CREATION 

 

We consider Ebgp as a use case in the network model. Ebgp 

is the protocol that routes between autonomous systems. It 

works inversely to ospf which is adding edges, if source is not 

the same. The following network graph shows the overlay 

from the loader that pushes packet flows into the ebgp edge 

graph module. 

        g_ebgp = anm.add_overlay {„‟ebgp‟‟ g_in} 

        g_ebgp.add_edges_from {e for e in g_in.edges{} 

                        if e.src.asn ** e.dat.asn} 

If the source asn is equal to the destination asn, the the 

input graph is equal to the anm input.  

 

 

IV. EVALUATION AND DISCUSSION 

 

We evaluate this study with autonet kit running web 

server in single-user mode client connected from 10.0.0.1. 

Figure 5.0 reveals a sample Autonetkit in a network. The 

Autonetkit application sends hyper transfer text protocol (http) 

post to the web server 10.0.0.1 through the individual 

connected web sockets d3.js 

 
Figure 5.0: A sample Autonetkit in Network 

The physical graph creation consists of links with soure, 

speed and target at different rates. The node received the asn 

with identification number 3. for each coordinates  in a device 

type “router” as follows:  

„‟phy‟‟:  {   

“Links”: { 

{ „‟source‟‟:  0, „‟speed‟‟  10,  „‟target‟‟:  11 }, 

{ „‟source‟‟:  0, „‟speed‟‟  10,  „‟target‟‟:  12 }, 

{ „‟source‟‟:  1, „‟speed‟‟  10,  „‟target‟‟:  11 }, 

} 

„‟node‟‟:  {   

{ „‟asn”: 3, “device_type”;  „‟router”, 

      “id”:  “11”,  “x”;  251.0,   “y”:  349.0 }, 

{ „‟asn”: 3, “device_type”;  „‟router”, 

; g_in = anm [ „ input‟ ] 

    Print  [n for  n  in  g_in if n.asn ** 1] 

  Print [e for e  in g_in.edges () if  e.src.asn (= e.dat.asn) 

 



 

Page 233 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 5, May 2016 

 

ISSN: 2394-4404 

      “id”:  “10”,  “x”;  250.0,   “y”:  201.0 }, 

{ „‟asn”: 2, “device_type”;  „‟router”, 

      “id”:  “11”,  “x”;  554.0,   “y”:  47.0}, 

In terms of doing some basic network creation using API, 

we considered using open Shortest Path First {ospf} as it runs 

within autonomous Systems similar to Border Gateway 

Protocol. We took node from the input graph and install on 

routers on the network and we added the edges from the input 

graph such as to all the routers within network and adding the 

edges from the input graph if the source is same as the edges. 

We draw the links to the networks as shown in figure 7.0 

What we used is router configurations basically. Figure 

1.0 shows the representation of a router packed into each other 

with routing protocols running on them and they communicate 

to each other and find a path. We built them into a big 

network, and essentially form the internet. By grouping this 

routers into different properties such as autonomous systems 

AS1221 Telstra and AS7575 AARNET. We can form 

different configurations as shown in Figure 6.0.  

 
Figure 6.0: Autonomous systems AS1221 Telstra and AS7575 

 

A. OSPF LINKS AND NETWORK GRAPH 

 

The network in Table71.0 was drawn in Yed 

Diagramming Application and import directly into networkx 

and see the attributes and nodes [Table 1.0 ] . We iterate over 

the nodes 

 In [4] :  

g_ospf = anm.add_overlay {„‟ospf‟‟ g_in} 

g_ospf.add_edges_from {e for e in g_in.edges{} 

               if e.src.asn ** e.dat.asn} 

 
 

 
Figure 7.0: A sample OSPF Autonomous Systems in Network 

in Yed diagramming 

 

B. ALGORITHM  

 

In using AutoNetkit, we created an algorithm that imports 

from autoNetkit, load to build the network  

Using AutoNetkit 

In [2] [1, ,3,  2,  4] 

[input:  (10,  4), input:  (3, 8),   input:  (2,  5),  input:  (7,  

9) ] 

 

PHYSICAL GRAPH 

 

In [3]:           

g_phy  =  anm[ „phy „] 

g_phy.add _nodes_from [g_in, retain = [„asn‟,  „label‟,   

„route_reflector‟ „] 

g_phy.add_edges_from[g_in.edges{}] 

print    list [g_phy .nodes{}] 

print    list [g_phy .edges{}] 

[11,  10,  13,  12,  1,  3,  2,  5,  4,  7,  6,  9,  8] 

[phy: {11, 9}, phy: {11, 8},  phy: {10, 9},  phy: {10,  8}, 

phy: {10,  4},  

[phy: {13,12}, phy: {13, 6}, phy: {12, 7}, phy: {1,  3},  

phy: {1,  2}, 

[phy: {3, 8},  phy: {3, 4}, phy: {2, 5}, phy: {2,  4},  phy: 

{5,  7},  phy: {5, 6}, phy: {7, 9}, phy: {7,  6},   

The physical graph above in Figure … is readable taking 

into consideration the topology in Figure [].. we could printout 

the path for the node list and edge list.  When building up 

multi queries, it became quite difficult. A visualization system 

of the scripts with d3 is seen in figure 7.0.  

g_ibgp = anm.add_overlay {„‟ibgp‟‟ g_in} 

g_ibgp.add_edges_from {{s,t,} { for g in g_ for t in g_in 

} 

                            if s.asn = t.asn} 

 

Import autonetkit 

From autonetkit import load, build_network 

Input_graph = load.graphml.load_graphml 

(„demo.graphml‟ ) 

 

anm = autonetkit.ANM( ) 

anm = build_network.initialise (input_grpah) 

 



 

Page 234 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 5, May 2016 

 

ISSN: 2394-4404 

C. IBGP NETWORK GRAPH  

 

The IBGP is the protocol within a network to 

communicate with another external network. An example is 

creating a full mesh topology and generate all the nodes and 

edges in the source network are the same as the nodes and 

edges in the destination. The ibgp are running in full mesh is 

going to be  border end as seen in the script in table 2.0 .In 

pretty large neworks,,route reflector works better which 

simply states that rather than every peer connecting to each 

other. Every routers and nodes connect to a central source and 

build as shown in Figure ….. In terms of expressing with 

graph operations, the syntax if we look at Autonetkit , we 

could look at the nodes in previous graph and group them by 

asn and give us a list of all the asn property and the nodes that 

have the asn in a set of routers and compare with another asn 

in a set of routers. 

In [6] : 

In [7] : g_ibgp = ans.add_overlay{“ibgp”  g_in, retain = 

“route_reflector‟ 

For   asn, nodes   in  g_ibgp.groupby {„asn‟} . items {  } : 

rrs = {n for n in nodes if n.route_reflector} 

if     len {rrs} : 

       //   setup rr hierarchy 

       Clients = set {nodes} = set {rrs} 

       Edges = { { s,t } for s in rrs for  t  in clients } 

       g_igbp.add_edges_from { edges} 

In [7] : g_ibgp = ans.add_overlay{“ibgp” g_in, retain =  

With this comprehension, looking at all the list of nodes 

in that asn dictionary if they have a route reflector set, if there 

is a link there, then we can do a set of operations….by 

determining, which direction to follow, which node is set and 

which node is done and creating a full mesh between the route 

reflectors and the those edges for the nodes {figure ---

0000}without the  set attributes as shown in Table … 
 

      
Figure 8.0 

 
Figure 9.0 

 
Figure 10.0 

 

 

V. CONCLUSION AND FUTURE RESEARCH 

 

The design approach in Table088 gives the templates 

which you can specify the compiler to use either as quagga, 

cisco or other routing vendor. We used Mako which is similar 

to other device template languages, defined the template, add 

iteration conditions with variable substitutions systems with 

similar device configuration syntax and network labels and 

use the set and get attributes on the nodes. 

 

 

REFERENCES 

 

[1] S. M. Metev and V. P. Veiko, Laser Assisted 

Microtechnology, 2nd ed., R. M. Osgood, Jr., Ed. Berlin, 

Germany: Springer-Verlag, 1998.  

[2] J. Breckling, Ed., The Analysis of Directional Time 

Series: Applications to Wind Speed and Direction, ser. 

Lecture Notes in Statistics. Berlin, Germany: Springer, 

1989, vol. 61. 

[3] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A 

novel ultrathin elevated channel low-temperature poly-Si 

TFT,” IEEE Electron Device Lett., vol. 20, pp. 569–571, 

Nov. 1999. 

[4] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. 

Gisin, “High resolution fiber distributed measurements 

with coherent OFDR,” in Proc. ECOC‟00, 2000, paper 

11.3.4, p. 109. 

[5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-

speed digital-to-RF converter,” U.S. Patent 5 668 842, 

Sept. 16, 1997. 

[6] M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. 

Available:http://www.ctan.org/tex-

archive/macros/latex/contrib/supported/IEEEtran/ 

[7] FLEXChip Signal Processor (MC68175/D), Motorola, 

1996. 

[8] “PDCA12-70 data sheet,” Opto Speed SA, Mezzovico, 

Switzerland. 

[9] Karnik, “Performance of TCP congestion control with 

rate feedback: TCP/ABR and rate adaptive TCP/IP,” M. 

Eng. thesis, Indian Institute of Science, Bangalore, India, 

Jan. 1999. 

[10] J. Padhye, V. Firoiu, and D. Towsley, “A stochastic 

model of TCP Reno congestion avoidance and control,” 

Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. 

Rep. 99-02, 1999 



 

Page 235 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 5, May 2016 

 

ISSN: 2394-4404 

[11] Matlock, H., and Reese, L.C., 1960, Generalized solutions 

for laterally loaded piles., Journal of Soil Mechanics and 

Foundation, 86(5), 63–91. 

[12] Nayak, G. C., and Zienkiewicz, O. C., 1972, Convenient 

forms of stress invariants for plasticity, Proc. ASCE, 

98(4), 949-953. 

[13] Noorzaei, J., Viladkar, M. N., Godbole, P. N., 1995, 

Influence of strain hardening on soil-structure interaction 

of framed structures, Computers & Structures, 55(5), 789-

795. 

[14] Owen, D. R. J., and Hinton, E., 1980, Finite elements in 

plasticity-theory and practice, Pineridge Press, Swansea. 

[15] Pise, P. J., 1982, Laterally loaded piles in a two-layer soil 

system., J. Geotech. Engrg. Div., 108(9), 1177–1181. 

[16] Poulos, H. G., 1971, Behavior of laterally loaded piles-I: 

Single piles., J. Soil Mech. and Found. Div., 97(5), 711–

731. 

[17] Reese, L. C., and Matlock, H., 1956, Non-dimensional 

solutions for laterally loaded piles with soil modulus 

assumed 

 

 


