

Page 90 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 3 Issue 4, April 2016

ISSN: 2394-4404

An Efficient Motion Estimation Technique For High Efficiency

Video Coding (HEVC/H.265)

Borra Venkata Chandra Swaroop

M.Tech Scholar,

School of Electronics and Communication Engineering,

REVA University, Bengaluru, Karnataka, India

Raveendra Gudodagi

Assistant Professor,

School of Electronics and Communication Engineering,

REVA University, Bengaluru, Karnataka, India

Dr. V. Siva Reddy

Professor,

School of Electronics and Communication Engineering,

REVA University, Bengaluru, Karnataka, India

Dr.Vijay Prakash A M

Professor, Department of Electronics and Communication

Engineering, Bangalore Institute of Technology,

Bengaluru, Karnataka, India

I. INTRODUCTION

The High Efficiency Video Coding (HEVC/H.265), the

newest standard became finalized in 2013, will made to

improve the efficiency in transmission and storage of video

content for video transmission applications. H.265 provides

improved performance gain when compared with its previous

standard, the H.264 Advanced Video Coding standard

(H.264/AVC), as it reduces the required data volume or

bandwidth by up to fifty percent, while keeping the exact

statistical visual quality. So, that is why H.265 is well suited

for 4k and 8k Ultra High-Definition (UHD) multimedia

applications and will most likely be the state of the art video

coding standard for future.

Among the advanced designs highlighted by Ohm et al

[1], HEVC employs a highly flexible coding tree structure.

Pictures are partitioned into Coding Tree Units (CTUs) with a

maximum size of 64x64, which are further subdivided into

Prediction Units (PU's), Coding Units (CU's), and Transform

Units (TU's). In inter-prediction, PU’s are broken down into

Prediction Blocks (PBs) using eight different modes, four of

which are asymmetric. This feature is referred to as

Asymmetric Motion Partitioning (AMP) and is one of the

primary innovations of HEVC’s inter-prediction scheme.

Meanwhile, the complexity of HEVC is high and

particularly the encoder’s intricacy is the major drawback as

analyzed by Bossen et al [2]. Recent studies attempted to

reduce HEVC’s complexity. For example, Correa et al [3]

proposed an algorithm that dynamically limits the coding

Abstract: High Efficiency Video Coding (HEVC), also called as H.265 which is the present compression standard,

which play a crucial role in many video transmission applications in the coming future. Its best compression performance

enables H.265 to be specifically suitable for ultra high definition videos in multimedia environments, however, it comes

with the high price and high computational complexity. The H.265 encoding process, involves the Motion Estimation

(ME), which is very time consuming process, which makes H.265 unrealistic for real-time applications at this present

moment. In this work, an efficient motion estimation algorithm is proposed, to perform bi-predictive ME in a highly

efficient manner. The PSNR, Rate-Distortion (RD) and Time comparison performances are evaluated in this work.

Keywords: High Efficiency Video Coding (HEVC), Bi-Predictive Motion Estimation, Sum of Absolute Differences

(SAD).

Page 91 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 3 Issue 4, April 2016

ISSN: 2394-4404

structures’ depth to solve a predefined complexity target for

battery-powered mobile devices. In very less resource-

constrained environments, particular hardware can be utilized

more efficiently in addition to reducing the encoder’s

complexity at an algorithmic level. For instance, Miyazawa et

al [4] presented custom-build hardware HEVC encoder based

on Field Programmable Gate Arrays (FPGAs) towards

enabling real-time performance.

However, such customized hardware setups are not

widely available. Most end users will instead expect to use

HEVC for day to day real time applications such as

videoconferencing or live streaming. Therefore, sufficiently

fast encoding speed should be achieved with regular retail

computers. Optimized algorithms, such as the fast Motion

Estimation (ME) scheme by Kibeya et al [5], can give a partial

solution. Such approaches, however, are often heavily data-

dependent and are inevitably a compromise between speed

and compression performance. Therefore, adequately and

reliably in order to meet the real-time demands, HEVC

encoders need to exploit the inherent parallel processing

capabilities of consumer-level hardware.

In addition, the software has been ported to the HEVC

test model HM13, and the encoding with 10 bit internal

accuracy is now supported, but here the prototype software

used is MATLAB with version 14b Finally, a much larger

amount of experimental results are presented to

comprehensively analyze the new features and the power

consumption, of course when compared to HM13 encoder,

MATLAB takes more time in executing the time.

The rest of the paper is structured as follows, the existing

motion estimation method (uni-prediction), the proposed

motion estimation algorithm (bi-prediction), experimental

results, and conclusion of the paper.

II. PRESENT UNI-PREDICTIVE SEARCH METHOD

To find the best MVs, a block matching algorithm is

explored. The search is a two-step process, where integer MVs

are found first, and then they are refined with quarter-pixel

accuracy using an 8-tap Interpolation Filter (IF). The cost is

calculated by using Sum of Absolute Differences (SAD) for

integer Motion Vectors, and the Sum of Absolute Transformed

Differences (SATD) for fractional Motion Vectors,

respectively. The implementation follows these two steps and

employs the same cost functions.

INTEGER MOTION VECTOR SEARCH

The presented algorithm moves entire CTU’s around in

the search area instead of searching the MV’s for every single

PB individually. At every search position, the 64x64 pixel

CTU is subdivided into 256 sub-blocks with a size of 4x4, for

which the respective SADs are calculated. At this point, sub-

sampling is used to speed up the process. Afterwards, the

SADs for every single PB inside the CTU are derived in a

recursive manner based on the SADs of their individual sub-

blocks. The AMPs are calculated using the same principle.

Their computation is just slightly more complex since sub-

blocks from two different depth layers of the CTU must be

accessed. This search method leads to exactly the same results

as if the search was performed using individual PBs, although

it is much more efficient on a GPU. The described algorithm

is referred to as Recursive Sum of Absolute Differences

(RSAD) and was inspired by the structured motion tree

approach [6]. The principle of Recursive Sum of Absolute

Differences is illustrated in Figure.1. It can be seen how the

SADs of all PBs are calculated in a recursive manner. For

example, the SAD of a 16x8 PB is calculated by adding up the

cost of its two 8x8 sub-blocks. Asymmetric PU partitions are

formed by adding either two or three SADs. A 24x32 PB, e.g.,

is formed out of three sub-blocks with sizes of 8x16, 8x16 and

16x32, respectively.

Figure 1: Schematic display of the proposed RSAD

algorithm

The RSAD is configured to use a thread block size of

16x16 with one block per CTU. Consequently, every 4x4 SAD

is processed by one thread. Parallel reduction is then used to

recursively calculate the SADs of all PBs. Hereby, the number

of threads is halved after every step until eventually the last

thread computes the topmost 64x64 PB’s cost. All the data

buffers needed for this process is kept in the shared memory in

order to minimize access latency. The shared memory is

essentially a very fast on-chip cache which can be accessed

cooperatively by all threads of the same block. The global

memory only needs to be read once at every search position

when the 4x4 sub-blocks are calculated. Nonetheless, the

amount of shared memory needed per thread block is only

9.43kB. This is important, as it indicates how many blocks can

occupy the GPU concurrently. The used graphics adapter

consists of 14 so called multiprocessors, each with 192 cores,

48kB shared memory, and 65536 registers. Theoretically, five

RSAD thread blocks can reside on each multiprocessor, which

means that in total 70 CTUs can be processed simultaneously.

This results in a reasonable occupancy and allows the GPU-

hardware to effectively hide memory latency. For further

optimization, a lookup table is employed which contains pre-

calculated costs for all MVs within a {-64..+64} range.

The proposed method is by nature a full-search algorithm

where the complexity is independent of the processed data. A

search pattern, which can be best described as a Frayed

Diamond (FD) as shown in Fig.2, is used to reduce the number

of tested positions. The FD pattern features a high search

density in the middle which gets progressively lower towards

Page 92 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 3 Issue 4, April 2016

ISSN: 2394-4404

the edges. With a regular full-search method 16641 positions

would be tested within a range of {-64….+64}. The FD

approach reduces this number to 3521 and is thus much faster.

Meanwhile, the impact on the coding efficiency is negligible.

Figure 2: Frayed Diamond search pattern

MOTION VECTOR REFINEMENT

The integer MVs are subsequently refined with first half-

and then quarter-pixel accuracy. An eight-tap IF is used in

order to generate the needed sub-pixels. One kernel is

launched for every PB size and every resultant pixel is

calculated by one thread. The thread configuration is hence

directly dependent on the number of PBs and their

dimensions. The used hardware, however, can only handle a

maximum amount of 1024 threads per block. For large PB

sizes, it is thus necessary to calculate multiple resultant pixels

per thread to stay within this limitation. Horizontal and

vertical filtering is performed in separate operations within the

same kernel. The intermediate pixels are stored in the shared

memory and the final sub-pixel blocks in the global memory.

The reasons for such arrangements are two-fold. Firstly, a total

of 20 buffers are needed to store all possible half- and quarter-

pixel blocks, which are too much data for the very limited

available shared memory. Secondly and more importantly, the

data must be accessible in the kernel to be subsequently

launched to calculate the MVs’ cost.

As mentioned, the Sum of Absolute differences is used to

estimate the cost of fractional MV's. The PB's are subdivided

into blocks of 8x8, 4x4, or 2x2 pixels and then a Hadamard

transformation is applied to these blocks prior to the cost

computation. In the respective kernel, one thread calculates

one transformation and afterwards parallel reduction is applied

to calculate the total cost of the respective MV. The needed

data is once again stored in the shared memory for maximum

efficiency. However, this configuration may lead to a thread

block size that is smaller than the warp size, which is 32. This

is undesirable because warps are the units in which threads are

scheduled by the GPU hardware. Therefore, multiple PB's are

eventually processed by one thread block. For example, 16

SATDs with the size of 8x8 are used for a 32x32 PB. To

match the warp size of 32, two PB's are assigned to every

thread block in that case instead of just one. This concludes

the uni-prediction.

III. PROPOSED BI-PREDICTIVE SEARCH ALGORITHM

In contrast to the above uni-prediction, bi-prediction

selects one picture from each of the two reference lists.

Consequently, two MV’s per PB are signaled. The algorithm

aims to find two predictions that result in the minimum error

between an original block (O) and a prediction block (P = P0

+ P1), whereby (P0, P1) are defined by two MV’s.

MOTION COMPENSATION

One kernel is launched for every individual PB size which

is used to build the prediction (P0) using Motion

Compensation (MC). However, the first thing the kernel

actually needs to do is to decide which uni-predictive MV

should be utilized to construct (P0) for every distinct PB. To

make this possible, access to all available reference pictures

and all MVs with their respective cost is needed. For every

PB, the cost of all found MVs is compared and the one with

the lowest cost is selected. The decisions are stored as bit-flags

in a dedicated buffer. One bit represents the list index and

another bit represents the reference picture index. At this point

it becomes clear why bi-prediction is so difficult to implement

on heterogeneous platforms, because from here on every

single PB potentially depends on distinct reference pictures

and operates on different search result buffers.

After the decision process, the kernel uses the IF to create

the prediction (P0) for every single PB. In this context, the

respectively selected MV in combination with its reference

picture is used. The resulting prediction signals are stored in a

buffer in the global memory. Similarly, it also employs the

shared memory to store the intermediate filter results.

MOTION VECTOR SEARCH

As mentioned, an iterative uni-predictive search is utilized

and therefore first integer MV’s are found which are

afterwards refined with quarter-pixel accuracy. For every PB

size, one kernel per available reference picture is invoked to

find the individual best integer MV. Which list is used

corresponds to the decision made in the MC kernel. If the best

MV for the respective PB points to list 0, then list 1 is used

and vice versa. This means that if the predictor (P0) was

produced using a MV of list 0, the corresponding vector for

(P1) is searched in list 1, or the other way around. Therefore,

the kernel also needs access to all reference pictures and

search result buffers, which is thus rather complex. It should

be noted that no reference pictures are being ignored at this

point, even if they are redundant. Before the search starts, the

reference samples are calculated as (2O – P0). The result is

stored in the shared memory and the global memory since it

needs to be available in the subsequent refinement step as

well. The version residing in the shared memory is sub-

sampled and the version in the global memory actually

contains all pixels. This is necessary because the SATDs are

later used for the fractional search. Afterwards, a regular full-

search algorithm with a search range of {-9..+9} is applied to

find the best MV. The same cost metrics are utilized as for the

uni-predictive search. The thread blocks are configured to

consist of 128 threads at most. In the x dimension, each thread

processes between 1 and 16 pixels, whereas in the y dimension

Page 93 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 3 Issue 4, April 2016

ISSN: 2394-4404

always height/2 threads are used due to the sub-sampling.

These relatively low thread numbers result in significantly

better performance here because the reduced occupancy

largely facilitates concurrent kernel execution on the device.

The motion vector refinement works almost the same way as

described in previous section. The only two differences are

that the prediction (2O – P0) is used as reference samples and

that the reference picture is selected based on the decision

made in the MC kernel. Again, this means that the respective

refinement kernels also need access to all pictures and result

buffers.

Figure 3: Flow diagram of the proposed bi-predictive search

algorithm

EXPERIMENTAL RESULTS

The following development environment was employed

to evaluate the performance of the proposed architecture and

algorithms: 6-core CPU with 12 logical threads running at

3.20 GHz, 32 GB memory, solid-state drive, programmable

GPU with a unified device architecture, and 64-bit Operating

System (OS). The machine only consists of regular consumer

electronics components and represents a common end-user

computer configuration.

The four HEVC test sequences were encoded in Full

High-Definition (HD) or beyond: (1) Kimono 1920x1080 and

(2) Traffic 2560x1600. The first have 240 frames and run at 24

Frames Per Second (FPS), and the other have 150 frames and

30 FPS. All the sequences have a color sub-sampling of 4:2:0.

The following figures show the original video sequence

and Motion estimated video of Kimono 1920x1080 and Traffic

2560x1600 for the uni-prediction.

Figure 4: Original Frame from Video Sequence (Kimono)

Figure 5: Motion Compensated Video Frame (Kimono)

Figure 6: Original Frame from Video Sequence (Traffic)

Input Video Frame Extraction

HEVC Encoding

Number of

frames to

process

Extract MV’s

MV Refinement

Cost Function

Bi-Predictive

Motion

Estimation

Motion

Compensation

Page 94 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 3 Issue 4, April 2016

ISSN: 2394-4404

Figure 7: Motion Compensated Video Frame (Traffic)

The following figures show the original video sequence

and Motion estimated video of the Kimono 1920x1080 and

Traffic 2560x1600for bi-prediction.

Figure 8: Original Frame from Video Sequence (Kimono)

Figure 9: Motion Compensated Video Frame (Kimono)

Figure 10: Original Frame from Video Sequence (Traffic)

Figure 11: Motion Compensated Video Frame (Traffic)

The following graphs show the comparison of Rate

Distortion, PSNR and time taken for Kimono 1920x1080 and

Traffic 2560x1600.

Figure 12: Rate Distortion comparison (Kimono)

Page 95 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 3 Issue 4, April 2016

ISSN: 2394-4404

Figure 13: PSNR comparison (Kimono)

Figure 14: Time comparison (Kimono)

Figure 15: Rate Distortion comparison (Traffic)

Figure 16: PSNR comparison (Traffic)

Figure 17: Time comparison (Traffic)

IV. CONCLUSION

A novel architecture with a range of new algorithm has

been presented to process bi-predictive Motion Estimation

(ME) for High Efficiency Video Coding (HEVC). It can be

concluded that bi-predictive Motion Estimation can be

computed very efficiently with large speedups and minimal

coding losses. From the results we can say that presented

prototype implementation has shown that bi-prediction for

HEVC can be processed effectively in a high parallel manner

when compared to the uni-prediction for the HEVC since, the

parameters Time Comparison, Rate Distortion and PSNR will

give the better result when compared to the Uni-Predictive

search algorithm.

REFERENCES

[1] J.-R. Ohm and G. Sullivan, “High efficiency video

coding: the next frontier in video compression,” IEEE

Signal Process. Mag., pp. 152-158, Jan. 2013.

[2] F. Bossen, B. Bross, K. Sühring, and D. Flynn, “HEVC

complexity and implementation analysis,” IEEE Trans.

Page 96 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 3 Issue 4, April 2016

ISSN: 2394-4404

Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1685-

1696, Dec. 2012.

[3] G. Correa, P. Assuncao, L. Agostini, and L. da Silva

Cruz, “Complexity control of high efficiency video

encoders for power-constrained devices,” IEEE Trans.

Consumer Electron., vol. 57, no. 4, pp. 1866-1874, Nov.

2011.

[4] K. Miyazawa, H. Sakate, S. Sekiguchi, N. Motoyama, Y.

Sugito, K. Iguchi, A. Ichigaya, and S. Sakaida, “Real-time

hardware implementation of HEVC video encoder for

1080p HD video,” in Proc. IEEE International Picture

Coding Symposium, San Jose, USA, pp. 225-228, Dec.

2013.

[5] H. Kibeya, F. Belghith, H. Loukil, M. Ben Ayed, and N.

Masmoudi, “TZSearch pattern search improvement for

HEVC motion estimation modules,” in Proc. IEEE

International Conference on Advanced Technologies for

Signal and Image Processing, Sousse, Tunisia, pp. 95-99,

Mar. 2014.

[6] R. Rodríguez-Sánchez, J. Martínez, G. Fernández-

Escribano, J. Claver, and J. Sánchez, “Reducing

complexity in H.264/AVC motion estimation by using a

GPU,” in Proc. IEEE International Workshop on

Multimedia Signal Processing, Hangzhou, China, pp. 1-6,

Oct. 2011.

