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I. INTRODUCTION 

 

The High Efficiency Video Coding (HEVC/H.265), the 

newest standard became finalized in 2013, will made to 

improve the efficiency in transmission and storage of video 

content for video transmission applications. H.265 provides 

improved performance gain when compared with its previous 

standard, the H.264 Advanced Video Coding standard 

(H.264/AVC), as it reduces the required data volume or 

bandwidth by up to fifty percent, while keeping the exact 

statistical visual quality. So, that is why H.265 is well suited 

for 4k and 8k Ultra High-Definition (UHD) multimedia 

applications and will most likely be the state of the art video 

coding standard for future. 

Among the advanced designs highlighted by Ohm et al 

[1], HEVC employs a highly flexible coding tree structure. 

Pictures are partitioned into Coding Tree Units (CTUs) with a 

maximum size of 64x64, which are further subdivided into 

Prediction Units (PU's), Coding Units (CU's), and Transform 

Units (TU's). In inter-prediction, PU’s are broken down into 

Prediction Blocks (PBs) using eight different modes, four of 

which are asymmetric. This feature is referred to as 

Asymmetric Motion Partitioning (AMP) and is one of the 

primary innovations of HEVC’s inter-prediction scheme. 

Meanwhile, the complexity of HEVC is high and 

particularly the encoder’s intricacy is the major drawback as 

analyzed by Bossen et al [2]. Recent studies attempted to 

reduce HEVC’s complexity. For example, Correa et al [3] 

proposed an algorithm that dynamically limits the coding 
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structures’ depth to solve a predefined complexity target for 

battery-powered mobile devices. In very less resource-

constrained environments, particular hardware can be utilized 

more efficiently in addition to reducing the encoder’s 

complexity at an algorithmic level. For instance, Miyazawa et 

al [4] presented custom-build hardware HEVC encoder based 

on Field Programmable Gate Arrays (FPGAs) towards 

enabling real-time performance. 

However, such customized hardware setups are not 

widely available. Most end users will instead expect to use 

HEVC for day to day real time applications such as 

videoconferencing or live streaming. Therefore, sufficiently 

fast encoding speed should be achieved with regular retail 

computers. Optimized algorithms, such as the fast Motion 

Estimation (ME) scheme by Kibeya et al [5], can give a partial 

solution. Such approaches, however, are often heavily data-

dependent and are inevitably a compromise between speed 

and compression performance. Therefore, adequately and 

reliably in order to meet the real-time demands, HEVC 

encoders need to exploit the inherent parallel processing 

capabilities of consumer-level hardware. 

In addition, the software has been ported to the HEVC 

test model HM13, and the encoding with 10 bit internal 

accuracy is now supported, but here the prototype software 

used is MATLAB with version 14b Finally, a much larger 

amount of experimental results are presented to 

comprehensively analyze the new features and the power 

consumption, of course when compared to HM13 encoder, 

MATLAB takes more time in executing the time. 

The rest of the paper is structured as follows, the existing 

motion estimation method (uni-prediction), the proposed 

motion estimation algorithm (bi-prediction), experimental 

results, and conclusion of the paper. 

 

 

II. PRESENT UNI-PREDICTIVE SEARCH METHOD 

 

To find the best MVs, a block matching algorithm is 

explored. The search is a two-step process, where integer MVs 

are found first, and then they are refined with quarter-pixel 

accuracy using an 8-tap Interpolation Filter (IF). The cost is 

calculated by using Sum of Absolute Differences (SAD) for 

integer Motion Vectors, and the Sum of Absolute Transformed 

Differences (SATD) for fractional Motion Vectors, 

respectively. The implementation follows these two steps and 

employs the same cost functions.  

 

INTEGER MOTION VECTOR SEARCH 

 

The presented algorithm moves entire CTU’s around in 

the search area instead of searching the MV’s for every single 

PB individually. At every search position, the 64x64 pixel 

CTU is subdivided into 256 sub-blocks with a size of 4x4, for 

which the respective SADs are calculated. At this point, sub-

sampling is used to speed up the process. Afterwards, the 

SADs for every single PB inside the CTU are derived in a 

recursive manner based on the SADs of their individual sub-

blocks. The AMPs are calculated using the same principle. 

Their computation is just slightly more complex since sub-

blocks from two different depth layers of the CTU must be 

accessed. This search method leads to exactly the same results 

as if the search was performed using individual PBs, although 

it is much more efficient on a GPU. The described algorithm 

is referred to as Recursive Sum of Absolute Differences 

(RSAD) and was inspired by the structured motion tree 

approach [6]. The principle of Recursive Sum of Absolute 

Differences is illustrated in Figure.1. It can be seen how the 

SADs of all PBs are calculated in a recursive manner. For 

example, the SAD of a 16x8 PB is calculated by adding up the 

cost of its two 8x8 sub-blocks. Asymmetric PU partitions are 

formed by adding either two or three SADs. A 24x32 PB, e.g., 

is formed out of three sub-blocks with sizes of 8x16, 8x16 and 

16x32, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic display of the proposed RSAD 

algorithm 

The RSAD is configured to use a thread block size of 

16x16 with one block per CTU. Consequently, every 4x4 SAD 

is processed by one thread. Parallel reduction is then used to 

recursively calculate the SADs of all PBs. Hereby, the number 

of threads is halved after every step until eventually the last 

thread computes the topmost 64x64 PB’s cost. All the data 

buffers needed for this process is kept in the shared memory in 

order to minimize access latency. The shared memory is 

essentially a very fast on-chip cache which can be accessed 

cooperatively by all threads of the same block. The global 

memory only needs to be read once at every search position 

when the 4x4 sub-blocks are calculated. Nonetheless, the 

amount of shared memory needed per thread block is only 

9.43kB. This is important, as it indicates how many blocks can 

occupy the GPU concurrently. The used graphics adapter 

consists of 14 so called multiprocessors, each with 192 cores, 

48kB shared memory, and 65536 registers. Theoretically, five 

RSAD thread blocks can reside on each multiprocessor, which 

means that in total 70 CTUs can be processed simultaneously. 

This results in a reasonable occupancy and allows the GPU-

hardware to effectively hide memory latency. For further 

optimization, a lookup table is employed which contains pre-

calculated costs for all MVs within a {-64..+64} range. 

The proposed method is by nature a full-search algorithm 

where the complexity is independent of the processed data. A 

search pattern, which can be best described as a Frayed 

Diamond (FD) as shown in Fig.2, is used to reduce the number 

of tested positions. The FD pattern features a high search 

density in the middle which gets progressively lower towards 
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the edges. With a regular full-search method 16641 positions 

would be tested within a range of {-64….+64}. The FD 

approach reduces this number to 3521 and is thus much faster. 

Meanwhile, the impact on the coding efficiency is negligible.  

 

 

  

 

 

 

 

 

 

 

Figure 2: Frayed Diamond search pattern 

 

MOTION VECTOR REFINEMENT 

 

The integer MVs are subsequently refined with first half- 

and then quarter-pixel accuracy. An eight-tap IF is used in 

order to generate the needed sub-pixels. One kernel is 

launched for every PB size and every resultant pixel is 

calculated by one thread. The thread configuration is hence 

directly dependent on the number of PBs and their 

dimensions. The used hardware, however, can only handle a 

maximum amount of 1024 threads per block. For large PB 

sizes, it is thus necessary to calculate multiple resultant pixels 

per thread to stay within this limitation. Horizontal and 

vertical filtering is performed in separate operations within the 

same kernel. The intermediate pixels are stored in the shared 

memory and the final sub-pixel blocks in the global memory. 

The reasons for such arrangements are two-fold. Firstly, a total 

of 20 buffers are needed to store all possible half- and quarter-

pixel blocks, which are too much data for the very limited 

available shared memory. Secondly and more importantly, the 

data must be accessible in the kernel to be subsequently 

launched to calculate the MVs’ cost. 

As mentioned, the Sum of Absolute differences is used to 

estimate the cost of fractional MV's. The PB's are subdivided 

into blocks of 8x8, 4x4, or 2x2 pixels and then a Hadamard 

transformation is applied to these blocks prior to the cost 

computation. In the respective kernel, one thread calculates 

one transformation and afterwards parallel reduction is applied 

to calculate the total cost of the respective MV. The needed 

data is once again stored in the shared memory for maximum 

efficiency. However, this configuration may lead to a thread 

block size that is smaller than the warp size, which is 32. This 

is undesirable because warps are the units in which threads are 

scheduled by the GPU hardware. Therefore, multiple PB's are 

eventually processed by one thread block. For example, 16 

SATDs with the size of 8x8 are used for a 32x32 PB. To 

match the warp size of 32, two PB's are assigned to every 

thread block in that case instead of just one. This concludes 

the uni-prediction. 

 

 

 

 

 

III. PROPOSED BI-PREDICTIVE SEARCH ALGORITHM 

 

In contrast to the above uni-prediction, bi-prediction 

selects one picture from each of the two reference lists. 

Consequently, two MV’s per PB are signaled. The algorithm 

aims to find two predictions that result in the minimum error 

between an original block (O) and a prediction block (P = P0 

+ P1), whereby (P0, P1) are defined by two MV’s. 

 

MOTION COMPENSATION 

 

One kernel is launched for every individual PB size which 

is used to build the prediction (P0) using Motion 

Compensation (MC). However, the first thing the kernel 

actually needs to do is to decide which uni-predictive MV 

should be utilized to construct (P0) for every distinct PB. To 

make this possible, access to all available reference pictures 

and all MVs with their respective cost is needed. For every 

PB, the cost of all found MVs is compared and the one with 

the lowest cost is selected. The decisions are stored as bit-flags 

in a dedicated buffer. One bit represents the list index and 

another bit represents the reference picture index. At this point 

it becomes clear why bi-prediction is so difficult to implement 

on heterogeneous platforms, because from here on every 

single PB potentially depends on distinct reference pictures 

and operates on different search result buffers. 

After the decision process, the kernel uses the IF to create 

the prediction (P0) for every single PB. In this context, the 

respectively selected MV in combination with its reference 

picture is used. The resulting prediction signals are stored in a 

buffer in the global memory. Similarly, it also employs the 

shared memory to store the intermediate filter results. 

 

MOTION VECTOR SEARCH 

 

As mentioned, an iterative uni-predictive search is utilized 

and therefore first integer MV’s are found which are 

afterwards refined with quarter-pixel accuracy. For every PB 

size, one kernel per available reference picture is invoked to 

find the individual best integer MV. Which list is used 

corresponds to the decision made in the MC kernel. If the best 

MV for the respective PB points to list 0, then list 1 is used 

and vice versa. This means that if the predictor (P0) was 

produced using a MV of list 0, the corresponding vector for 

(P1) is searched in list 1, or the other way around. Therefore, 

the kernel also needs access to all reference pictures and 

search result buffers, which is thus rather complex. It should 

be noted that no reference pictures are being ignored at this 

point, even if they are redundant. Before the search starts, the 

reference samples are calculated as (2O – P0). The result is 

stored in the shared memory and the global memory since it 

needs to be available in the subsequent refinement step as 

well. The version residing in the shared memory is sub-

sampled and the version in the global memory actually 

contains all pixels. This is necessary because the SATDs are 

later used for the fractional search. Afterwards, a regular full-

search algorithm with a search range of {-9..+9} is applied to 

find the best MV. The same cost metrics are utilized as for the 

uni-predictive search. The thread blocks are configured to 

consist of 128 threads at most. In the x dimension, each thread 

processes between 1 and 16 pixels, whereas in the y dimension 
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always height/2 threads are used due to the sub-sampling. 

These relatively low thread numbers result in significantly 

better performance here because the reduced occupancy 

largely facilitates concurrent kernel execution on the device. 

The motion vector refinement works almost the same way as 

described in previous section. The only two differences are 

that the prediction (2O – P0) is used as reference samples and 

that the reference picture is selected based on the decision 

made in the MC kernel. Again, this means that the respective 

refinement kernels also need access to all pictures and result 

buffers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Flow diagram of the proposed bi-predictive search 

algorithm 

 

EXPERIMENTAL RESULTS 

 

The following development environment was employed 

to evaluate the performance of the proposed architecture and 

algorithms: 6-core CPU with 12 logical threads running at 

3.20 GHz, 32 GB memory, solid-state drive, programmable 

GPU with a unified device architecture, and 64-bit Operating 

System (OS). The machine only consists of regular consumer 

electronics components and represents a common end-user 

computer configuration. 

The four HEVC test sequences were encoded in Full 

High-Definition (HD) or beyond: (1) Kimono 1920x1080 and 

(2) Traffic 2560x1600. The first have 240 frames and run at 24 

Frames Per Second (FPS), and the other have 150 frames and 

30 FPS. All the sequences have a color sub-sampling of 4:2:0. 

The following figures show the original video sequence 

and Motion estimated video of Kimono 1920x1080 and Traffic 

2560x1600 for the uni-prediction. 

 

 
Figure 4: Original Frame from Video Sequence (Kimono) 

 
Figure 5: Motion Compensated Video Frame (Kimono) 

 
Figure 6: Original Frame from Video Sequence (Traffic) 
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Figure 7: Motion Compensated Video Frame (Traffic) 

The following figures show the original video sequence 

and Motion estimated video of the Kimono 1920x1080 and 

Traffic 2560x1600for bi-prediction. 

 
Figure 8: Original Frame from Video Sequence (Kimono) 

 
Figure 9: Motion Compensated Video Frame (Kimono) 

 
Figure 10: Original Frame from Video Sequence (Traffic) 

 
Figure 11: Motion Compensated Video Frame (Traffic) 

The following graphs show the comparison of Rate 

Distortion, PSNR and time taken for Kimono 1920x1080 and 

Traffic 2560x1600. 

 
Figure 12: Rate Distortion comparison (Kimono) 
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Figure 13: PSNR comparison (Kimono) 

 
Figure 14: Time comparison (Kimono) 

 
Figure 15: Rate Distortion comparison (Traffic) 

 

 
Figure 16: PSNR comparison (Traffic) 

 
Figure 17: Time comparison (Traffic) 

 

 

IV. CONCLUSION 

 

A novel architecture with a range of new algorithm has 

been presented to process bi-predictive Motion Estimation 

(ME) for High Efficiency Video Coding (HEVC). It can be 

concluded that bi-predictive Motion Estimation can be 

computed very efficiently with large speedups and minimal 

coding losses. From the results we can say that presented 

prototype implementation has shown that bi-prediction for 

HEVC can be processed effectively in a high parallel manner 

when compared to the uni-prediction for the HEVC since, the 

parameters Time Comparison, Rate Distortion and PSNR will 

give the better result when compared to the Uni-Predictive 

search algorithm. 
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