Chromatic Complementary Tree Domination In Graphs

S. Muthammai

Government Arts College for Women (Autonomous), Pudukkottai, India P. Vidhya

S.D.N.B. Vaishnav College for Women (Autonomous), Chennai, India

Abstract: Let G = (V, E) be a simple graph. A subset D of V(G) is called a complementary tree dominating set (ctdset) of G if D is a dominating set and $\langle V-D \rangle$ is a tree. D is called a chromatic complementary tree dominating set (chromatic ctd-set) of G if D is a ctd-set and $\chi(\langle D \rangle) = \chi(G)$. The minimum cardinality of a chromatic ctd-set of G is denoted by $\gamma_{ctd}^{\chi}(G)$ and is called chromatic complementary tree domination number of G. In this paper, a study of chromatic ctd-set is initiated.

AMS Subject Classification: 05C35.

Keywords: Complementary tree dominating set, chromatic ctd-set, chromatic ctd numbers.

I. CHROMATIC COMPLEMENTARY TREE DOMINATING SET

DEFINITION 1:

Let G = (V, E) be a simple graph. A subset D of V(G) is called a complementary tree dominating set (ctd-set) of G if D is a dominating set and $\langle V-D \rangle$ is tree.

DEFINITION 2:

Let G = (V, E) be a simple graph. A subset D of V(G) is called a chromatic complementary tree dominating set (chromatic ctd-set) of G if D is a complementary tree dominating set of G and $\chi(\langle D \rangle) = \chi(G)$.

Since V(G) is a ctd-set of G and $\chi(\langle V(G) \rangle) = \chi(G)$, V(G) is a chromatic ctd-set of G.

The minimum cardinality of a chromatic ctd-set of G is called the chromatic complementary tree domination number and is denoted by $\gamma^{\chi}_{ctd}(G)$.

Any chromatic ctd-set is also a ctd-set and hence $\gamma_{ctd}(G) \leq \gamma_{ctd}^{\chi}(G)$.

EXAMPLE 3:

If $G \cong C_4$, then $\gamma_{ctd}(G) = \gamma_{ctd}^{\chi}(G)$ and if $G \cong K_4 - e$, $\gamma_{ctd}(G) = 1$ and $\gamma_{ctd}^{\chi}(G) = 3$.

THEOREM 4: Let $G = P_n$, then

 $\gamma^{\chi}_{ctd}\left(P_{n}\right) = \begin{cases} n-1 \ if \ n=4 \\ n-2 \ if \ n\geq 5 \end{cases}$

PROOF:

Let $V(P_n) = \{u_1, u_2, ..., u_n\}$

CASE (I): $n \ge 5$

The set $D = \{u_1, u_2, ..., u_{i-1}, u_{i+2}, ..., u_{n-1}, u_n\}$ is a γ_{ctd} -set of P_n and $V-D = \{u_i, u_{i+1}\}$. Since, $\langle D \rangle \cong P_{i-1} \cup P_{n-i-1}, \chi(\langle D \rangle) = 2 = \chi(P_n)$. Therefore, D is a chromatic ctd-set of G. Also, $n-2 = \gamma_{ctd}(G) \le \gamma_{ctd}^{\chi}(G) \le |D| = n-2$. Hence, $\gamma_{ctd}^{\chi}(G) = n-2$ if $n \ge 5$.

CASE (II): n = 4

Then the set $D = \{u_1, u_4\}$ is a γ_{ctd} -set of G and $\chi(\langle D \rangle) = 1$. 1, Since D is independent. But $\gamma(P_4) = 2$.

Since, $\chi(D \cup \{u_2\}) = 2 = \chi(P_4)$, $D \cup \{u_2\}$ is a chromatic ctd-set of G.

Therefore, $\gamma_{ctd}^{\chi}(G) \leq |D \cup \{u_2\}| \leq 3 = n-1$. But, $\gamma_{ctd}^{\chi}(G) > \gamma_{ctd}(G) = |D| = 2$. That is, $\gamma_{ctd}^{\chi}(G) \geq 3 = n-1$. Hence, $\gamma_{ctd}^{\chi}(G) = n-1$ if n = 4.

THEOREM 5:
Let
$$G = C_n$$
, $n \ge 4$
 $\gamma_{ctd}^{\chi}(C_n) = \begin{cases} n-2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$

PROOF:

Let $V(C_n) = \{u_1, u_2, ..., u_n\}$. Then the set $D = \{u_1, u_2, ..., u_{n-2}\}$ is a γ_{ctd} -set of G and $\langle D \rangle \cong P_{n-2}$ and hence $\chi(\langle D \rangle) = 2$. But, $\chi(G) = \chi(C_n) = \begin{cases} 2, \text{ if } n \text{ is even} \\ 3, \text{ if } n \text{ is odd} \end{cases}$

CASE (I): n is even

Since, $\chi(\langle D \rangle) = \chi(C_n) = 2$, D is a chromatic ctd-set of G and hence, $n-2 = \gamma_{ctd}(G) \leq \gamma_{ctd}^{\chi}(G) \leq |D| = n-2$. Therefore, $\gamma_{ctd}^{\chi}(G) = n-2$.

CASE (II): n is odd.

Here, $\chi(\langle D \rangle) = 2$ and $\chi(C_n) = 3$. Let $D' = D \cup \{u_{n-1}\}$. Then D' is a ctd-set and $\langle D \rangle \cong P_{n-1}$ and $\chi(\langle D' \rangle) = 2 \neq \chi(C_n)$. Therefore, D' is not a chromatic ctd-set of G.

Therefore, the set $D'\cup\{u_n\}=V(G)$ is a chromatic ctd-set of G and $|D'\cup\{u_n\}|=n,$ if n is even.

Hence,
$$\gamma_{ctd}^{\chi}(C_n) = \begin{cases} n-2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

THEOREM 6:

 $\gamma_{ctd}^{\chi}(G)$ (K_{m,n}) = m if m \leq n and m, n \geq 2.

PROOF:

Let $G = K_{m,n}$, $m, n \ge 2$ and $m \le n$ and let $\{v_1, v_2\}$ be the bipartition of G. Let $V_1 = \{u_1, u_2, ..., u_m\}$, $V_2 = \{v_1, v_2, ..., v_n\}$. Then the set $D = \{v_1, u_1, u_2, ..., u_{m-1}\}$ is a ctd-set of $K_{m,n}$ and $\langle D \rangle \cong K_{1,m-1}$. Therefore, $\chi(\langle D \rangle) = \chi(G)$ and hence D is a chromatic ctd-set of G which implies $\gamma_{ctd}^{\chi}(G) \le m$. Also m =

 $\gamma_{ctd}(G) \leq \gamma^{\chi}_{ctd}(G) \leq m.$

THEOREM 7:

If $G \cong K_{1,n}$, then $\gamma_{ctd}^{\chi}(G) = n$, where $n \ge 2$.

PROOF:

Let $V(K_{1,n}) = \{u, u_1, u_2, ..., u_n\}$, where u is the central vertex and $u_1, u_2, ..., u_n$ are the pendant vertices of $K_{1,n}$.

The set $D = V(K_{1,n}) - \{u_n\}$ is a ctd-set of $K_{1,n}$ and $\langle D \rangle \cong K_{1,n-1}$. Also, $\chi(\langle D \rangle) = \chi(K_{1,n}) = 2$.

D is a minimum chromatic ctd-set of $K_{1,n}$. Hence, $\gamma_{ctd}(K_{1,n}) = n$. \Box *Note.* If $G \cong K_n$, then $\gamma_{ctd}^{\chi}(G) = n, n \ge 3$.

THEOREM 8:

For a tree T, $\gamma_{ctd}^{\chi}(T) = m+1$, if each vertex of degree atleast two is a support, where m is the number of pendant vertices in T.

PROOF:

Assume each vertex of degree atleast two of T is a support. Let D be the set of pendant vertices in T. Then D is a ctd-set of G and $\chi(\langle D \rangle) = 1$. But $\chi(T) = 2$.

Therefore, $\gamma_{ctd}^{\chi}(G) > |D| = m$.

That is, $\gamma_{ctd}^{\chi}(G) \ge m+1$.

Let u be a vertex in T of degree atleast two and is adjacent to exactly one support of T.

Then $D \cup \{u\}$ is a ctd-set of G and $\langle D \cup \{u\} \rangle \cong \langle T-\{u\} \rangle$ and $\chi(\langle D \cup \{u\} \rangle) = \chi \langle T-\{u\} \rangle = 2$. Therefore, $D \cup \{u\}$ is a chromatic ctd-set of G.

$$\begin{split} \gamma^{\chi}_{ctd}(T) &\leq |D \cup \{u\}| = m+1 \\ \text{Hence, } \gamma^{\chi}_{ctd}(T) &= m+1. \end{split}$$

THEOREM 9:

Let T be a tree, which is not a star. Then $\gamma_{ctd}^{\chi}(T) \leq \gamma_{ctd}(T) + 1$.

PROOF:

Let T be a tree on p vertices where $p \ge 4$.

Let D be a ctd-set of T, since T is not a star, $|D| \le p-2$ and $\chi(T) = 2$.

CASE (I): D is independent

Then all the pendant vertices of T are numbers of D. That is, every vertex in V–D is a support of G. $\chi(D) = 1$ and $\chi(T) = 2$. Let v be a vertex of minimum degree in T, such that v is a pendant vertex in $\langle V(T)-D \rangle$.

Therefore, $\chi(\langle D \cup \{u\} \rangle) = 2$ and $\gamma_{ctd}^{\chi}(T) = |D \cup \{v\}| =$

$$\gamma_{\rm ctd}(G) + 1$$

CASE (II): D is not independent Then $\chi(\langle D \rangle) = 2 = \chi(T)$. Therefore, D is a chromatic ctd-set of T.

Therefore, $\gamma_{ctd}^{\chi}(T) = \gamma_{ctd}(T) < \gamma_{ctd}(T) + 1.$

The above inequality holds, if every vertex of degree atleast 2 in T is a support.

THEOREM 10:

If $G \cong T + K_1$, where T is a tree, then $\gamma_{ctd}^{\chi}(G) \leq t+2$ where t is the minimum number of pendant vertices adjacent to an end support vertex of T.

PROOF:

Let $G \cong T + K_1$, where T is a tree. Then, $\gamma_{ctd}(G) = 1$. Let D be a γ_{ctd} -set of G such that |D| = 1. But $\chi(T + K_1) = 3$

Therefore, D is not a chromatic ctd-set of G. Let $V(K_1) = \{u\}$ and let v be a support of T having minimum number of pendant vertices such that $T-\{v\}$ is connected.

If S is the set of pendant vertices in T adjacent to v, then $D \cup S \cup \{v\}$ is a ctd-set of G and $\chi(D \cup S \cup \{v\}) = 3$. $D \cup S$ $\cup \{v\}$ is a chromatic ctd-set of G and hence $\gamma_{ctd}^{\chi}(G) \leq |S| + 2$ = t + 2.

REMARK:

 $\gamma_{\text{ctd}}^{\chi}(G) = 1 \text{ if and only if } G \cong K_2.$

If G is a path, on atleast 5 vertices, then any γ_{ctd}-set of G is a chromatic ctd-set.

That is, $\gamma_{ctd}^{\chi}(G) = \gamma_{ctd}(G)$.

✓ If G is a star on atleast p (p ≥ 3) vertices, then $\gamma_{ctd}(G) = p-1$.

If D is a ctd-set of G containing the central vertex of G, then $\gamma_{ctd}^{\chi}(G) = \gamma_{ctd}(G)$.

✓ If G is a graph on atleast three vertices, then $\gamma_{ctd}^{\chi}(G) \ge 2$.

THEOREM 11:

For any connected graph, $\gamma_{ctd}^{\chi}(G) = 2$ if and only if G is a graph obtained from a tree by joining each of the vertices of the tree to the vertices of K_2 such that deg_G $v \ge 2$, for all $v \in V(K_2)$ and no two adjacent vertices of the tree are adjacent to the same vertex of K_2 .

PROOF:

Let D be a γ_{ctd} -set of G. Then $\gamma_{ctd}(G) = |D|$ But $\gamma_{ctd}^{\chi}(G) = 2$ Since $\gamma_{ctd}(G) \le \gamma_{ctd}^{\chi}(G) = 2$, $|D| \le 2$ Therefore, |D| = 1 or |D| = 2.

CASE (*I*): |D| = 1

Therefore, $G \cong T + K_1$, for any tree T on atleast 2 vertices and $\chi(G) \ge 3$, $\chi(\langle D \rangle) = 1$ implies that, D is not a chromatic ctd-set of G.

CASE (II): |D| = 2

Then G is one of the following graphs.

- ✓ G is the graph obtained from $T + K_1$ with one pendant edge attached at the vertex of K_1 , where T is any tree.
- ✓ G is the graph obtained from a tree by joining each of the vertices of the tree to the vertices of K, such that deg_G v ≥ 2, ∀ v ∈ V(K₂).
- ✓ G is the graph obtained from a tree by joining each of the vertices of the tree to the vertices of $2K_1$ such that deg_G v ≥ 1, $\forall v \in V(2K_1)$.

If G is one of the graphs mentioned in (i) then $\gamma_{ctd}(G) \ge 3$ and in (iii), $\chi(\langle D \rangle) = 1$.

In (ii), if any two adjacent vertices of the tree are adjacent to the same vertex of K_2 , then $\gamma_{ctd}(G) \ge 3$.

Therefore, G is a graph obtained from a tree by joining each of the vertices of the tree to the vertices of K_2 such that $\deg_G v \ge 2$, for all $v \in V(K_2)$ and no two adjacent vertices of the tree are adjacent to the same vertex of K_2 .

In this case, $D = V(K_2)$ is a γ_{ctd} -set of G and $\chi(\langle D \rangle) = 2$. Also, $\chi(G) = 2$.

Therefore, D is a chromatic ctd-set of G.

THEOREM 12:

Given a positive integer $t \ge 3$, there exists a connected graph G such that $\gamma_{ctd}^{\chi}(G) = t$.

PROOF:

Let G be a graph obtained by attaching a vertex of complete graph on t vertices at the vertex of K_1 in $P_n + K_1$, where P_n is a path on n vertices ($n \ge 2$).

For this graph G, $\chi(G) = t$

The set D of vertices in K_t is a ctd-set of G and $\chi(D) = t$. Therefore, D is a chromatic ctd-set of G.

THEOREM 13:

$$\gamma_{\text{ctd}}^{\chi}(\mathbf{W}_{n}) = \begin{cases} n & \text{if } n \text{ is even} \\ 3 & \text{if } n \text{ is odd} \end{cases}$$

REFERENCES

- [1] Frank Harary, Graph Theory, Narosa Publishing House, Reprint, 2001.
- [2] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
- [3] S. Muthammai, M. Bhanumathi and P. Vidhya, Complementary tree domination number of a graph, International Mathematical Forum, {6(26) (2011), 1273–1282.
- [4] M. Valliammal, S.P. Subbiah, V. Swaminathan, Chromatic complementary acyclic domination in graphs, Int. Journal of Pure and Applied Mathematics, 86(6) (2013), 975–981.