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I. CHROMATIC COMPLEMENTARY TREE 

DOMINATING SET 

 

DEFINITION 1: 

Let G = (V, E) be a simple graph.  A subset D of V(G) is 

called a complementary tree dominating set (ctd-set) of G if D 

is a dominating set and <VD> is tree. 
 

DEFINITION 2: 

Let G = (V, E) be a simple graph.  A subset D of V(G) is 

called a chromatic complementary tree dominating set 

(chromatic ctd-set) of G if D is a complementary tree 

dominating set of G and (<D>) = (G). 

Since V(G) is a ctd-set of G and (<V(G)>) = (G), V(G) 
is a chromatic ctd-set of G. 

The minimum cardinality of a chromatic ctd-set of G is 

called the chromatic complementary tree domination number 

and is denoted by (G)γχ

ctd . 

Any chromatic ctd-set is also a ctd-set and hence ctd(G)  

(G)γχ

ctd . 

 

EXAMPLE 3: 

If G  C4, then ctd(G) = (G)γχ

ctd  and if G  K4  e, ctd(G) 

= 1 and (G)γχ

ctd  = 3. 

 

THEOREM 4: 
Let G = Pn, then 

          








5n if2n
4n if1n

)(Pγ n

χ

ctd  

 

PROOF: 

Let V(Pn) = {u1, u2, ..., un} 

 

CASE (I): n  5  

The set D = {u1, u2, ..., ui1, ui+2, ..., un1, un} is a ctd-set of 

Pn and VD = {ui, ui+1}.  Since, <D>  Pi1  Pni1, (<D>) = 

2 = (Pn).  Therefore, D is a chromatic ctd-set of G.  Also, n2 

= ctd(G)  (G)γχ

ctd   |D| = n2.  Hence, (G)γχ

ctd  = n2 if n  

5. 

 
CASE (II): n = 4  

Then the set D = {u1, u4} is a ctd-set of G and (<D>) = 

1, Since D is independent.  But (P4) = 2. 

Since, (D  {u2}) = 2 = (P4), D  {u2} is a chromatic 

ctd-set of G.   

Therefore, (G)γχ

ctd   |D  {u2}|  3 = n1.  But, (G)γχ

ctd  

> ctd(G) = |D| = 2.  That is, (G)γχ

ctd   3 = n1.  Hence, 

(G)γχ

ctd  = n1 if n = 4.   

               □ 

THEOREM 5: 

Let G = Cn, n  4 

          


 


odd isn  ifn
even isn  if2n

)(Cγ n

χ

ctd  
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PROOF: 

Let V(Cn) = {u1, u2, ..., un}.  Then the set D = {u1, u2, ..., 

un2} is a ctd-set of G and <D>  Pn2 and hence  

(<D>) = 2.  But, (G) = (Cn) = 




odd isn  if3,
even isn  if,2

 

 

CASE (I): n is even  

Since, (<D>) = (Cn) = 2, D is a chromatic ctd-set of G 

and hence, n2 = ctd(G)   (G)γχ

ctd   |D| = n2. Therefore, 

(G)γχ

ctd  = n2. 

 

CASE (II): n is odd.   

Here, (<D>) = 2 and (Cn) = 3.  Let D = D  {un1}.  

Then D is a ctd-set and <D>  Pn1 and (<D>) = 2 (Cn).  

Therefore, D is not a chromatic ctd-set of G. 

Therefore, the set D  {un} = V(G) is a chromatic ctd-set 

of G and |D  {un}| = n, if n is even. 

Hence, 


 


odd isn  ifn
even isn  if2n

)(Cγ n

χ

ctd  □ 

 

THEOREM 6: 

(G)γχ

ctd  (Km,n) = m if m  n and m, n  2. 

 

PROOF: 

Let G = Km,n, m, n  2 and m  n and let {v1, v2} be the 
bipartition of G.  Let V1 = {u1, u2, ..., um}, V2 = {v1, v2, ..., vn}.  

Then the set D = {v1, u1, u2, ..., um1} is a ctd-set of Km,n and 

<D>  K1,m1.  Therefore, (<D>) = (G) and hence D is a 

chromatic ctd-set of G which implies (G)γχ

ctd   m.  Also m = 

ctd(G)  (G)γχ

ctd   m.        □ 

 

THEOREM 7: 

If G  K1,n, then (G)γχ

ctd  = n, where n  2. 

 

PROOF: 

Let V(K1,n) = {u, u1, u2, ..., un}, where u is the central 

vertex and u1, u2, ..., un are the pendant vertices of K1,n. 

The set D = V(K1,n)  {un} is a ctd-set of K1,n and <D>  

K1,n1.  Also, (<D>) = (K1,n) = 2. 
D is a minimum chromatic ctd-set of K1,n. 

Hence, ctd(K1,n) = n.          □ 

Note. If G  Kn, then (G)γχ

ctd  = n, n  3. 

 

THEOREM 8: 

For a tree T, (T)γ χ

ctd  = m+1, if each vertex of degree 

atleast two is a support, where m is the number of pendant 
vertices in T. 

 

PROOF: 

Assume each vertex of degree atleast two of T is a 

support.  Let D be the set of pendant vertices in T.  Then D is 

a ctd-set of G and (<D>) = 1.  But (T) = 2. 

Therefore, (G)γχ

ctd  > |D| = m. 

That is, (G)γχ

ctd   m+1. 

Let u be a vertex in T of degree atleast two and is adjacent 

to exactly one support of T. 

Then D  {u} is a ctd-set of G and <D  {u}>  

<T{u}> and (<D  {u}>) = <T{u}> = 2. Therefore,  

D  {u} is a chromatic ctd-set of G. 

(T)γ χ

ctd   |D  {u}| = m+1 

Hence, (T)γ χ

ctd  = m+1.          □ 

 

THEOREM 9: 

Let T be a tree, which is not a star. Then (T)γ χ

ctd  ctd(T) 

+ 1. 

 

PROOF: 

Let T be a tree on p vertices where p  4. 

Let D be a ctd-set of T, since T is not a star, |D|  p2 and 

(T) = 2. 
 

CASE (I):  D is independent  

Then all the pendant vertices of T are numbers of D.  That 

is, every vertex in VD is a support of G. (D) = 1 and (T) = 
2.  Let v be a vertex of minimum degree in T, such that v is a 

pendant vertex in <V(T)D>. 

Therefore, (<D  {u}>) = 2 and (T)γ χ

ctd  = |D  {v}| = 

ctd(G) + 1 
 

CASE (II):  D is not independent Then (<D>) = 2 = (T).  
Therefore, D is a chromatic ctd-set of T. 

Therefore, (T)γ χ

ctd  = ctd(T) < ctd(T) + 1.       □ 

The above inequality holds, if every vertex of degree 

atleast 2 in T is a support. 

 

THEOREM 10: 

If G  T + K1, where T is a tree, then (G)γχ

ctd   t+2 where 

t is the minimum number of pendant vertices adjacent to an 

end support vertex of T. 

 

PROOF: 

Let G  T + K1, where T is a tree.  Then, ctd(G) = 1. Let 

D be a ctd-set of G such that |D| = 1.  But (T + K1) = 3 
Therefore, D is not a chromatic ctd-set of G.  Let V(K1) = 

{u} and let v be a support of T having minimum number of 

pendant vertices such that T{v} is connected. 
If S is the set of pendant vertices in T adjacent to v, then 

D  S  {v} is a ctd-set of G and (D  S  {v}) = 3. D  S 

 {v} is a chromatic ctd-set of G and hence (G)γχ

ctd   |S| + 2 

= t + 2.          □ 

 

REMARK: 

 (G)γχ

ctd  = 1 if and only if G  K2. 

 If G is a path, on atleast 5 vertices, then any ctd-set of G 
is a chromatic ctd-set. 

That is, (G)γχ

ctd  = ctd(G). 

 If G is a star on atleast p (p  3) vertices, then ctd(G) = 

p1. 
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If D is a ctd-set of G containing the central vertex of G, 

then (G)γχ

ctd  = ctd(G). 

 If G is a graph on atleast three vertices, then (G)γχ

ctd   2. 

 
THEOREM 11: 

For any connected graph, (G)γχ

ctd  = 2 if and only if G is a 

graph obtained from a tree by joining each of the vertices of 

the tree to the vertices of K2 such that degG v  2, for all v  
V(K2) and no two adjacent vertices of the tree are adjacent to 

the same vertex of K2. 

 

PROOF: 

Let D be a ctd-set of G. Then ctd(G) = |D| 

But (G)γχ

ctd  = 2 

Since ctd(G)  (G)γχ

ctd  = 2, |D|  2 

Therefore, |D| = 1 or |D| = 2. 
 

CASE (I): |D| = 1  

Therefore, G  T + K1, for any tree T on atleast 2 vertices 

and (G)  3, (<D>) = 1 implies that, D is not a chromatic 
ctd-set of G. 

 

CASE (II): |D| = 2  

Then G is one of the following graphs.  

 G is the graph obtained from T + K1 with one pendant 

edge attached at the vertex of K1, where T is any tree.  

 G is the graph obtained from a tree by joining each of the 

vertices of the tree to the vertices of K, such that degG v  

2,  v  V(K2).  
 G is the graph obtained from a tree by joining each of the 

vertices of the tree to the vertices of 2K1 such that degG v 

 1,  v  V(2K1).  

If G is one of the graphs mentioned in (i) then ctd(G)  3 

and in (iii), (<D>) = 1. 
In (ii), if any two adjacent vertices of the tree are adjacent 

to the same vertex of K2, then ctd(G)  3. 
Therefore, G is a graph obtained from a tree by joining 

each of the vertices of the tree to the vertices of K2 such that 

degG v  2, for all v  V(K2) and no two adjacent vertices of 
the tree are adjacent to the same vertex of K2. 

In this case, D = V(K2) is a ctd-set of G and (<D>) = 2.  

Also, (G) = 2. 
Therefore, D is a chromatic ctd-set of G. 

       

THEOREM 12: 

Given a positive integer t  3, there exists a connected 

graph G such that (G)γχ

ctd  = t. 

 

PROOF: 
Let G be a graph obtained by attaching a vertex of 

complete graph on t vertices at the vertex of K1 in Pn + K1, 

where Pn is a path on n vertices (n  2). 

For this graph G, (G) = t 

The set D of vertices in Kt is a ctd-set of G and (D) = t. 
Therefore, D is a chromatic ctd-set of G. 

 

THEOREM 13: 

          




odd isn  if3
even isn  ifn

)(Wγ n

χ

ctd  
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