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I. INTRODUCTION 

 

The gamma family distributions was discussed by Karl 

Pearson in 1895. As pointed out in Balakrishnan and Basu 

(1995). However, after a period of 35 years the exponential 

distribution, which is a special case of the gamma distribution 

to appear on its own. It is also related to Poisson process as it 

has been observed that the time between two successive 

Poisson events follows the exponential distribution. While 

discussing the sampling of standard deviation (S.D), the 

exponential distribution was referred by Kondo (1930) as 

Pearson’s Type X distribution. Steffensens (1930), Teissier 

(1934) and Weibull (1939) proposed the applications of 

exponential distribution in actuarial, biological and 

engineering problems respectively. 

An extension of exponential distribution was proposed by 

Weibull (1951). The exponential distribution is a special case 

wherein the shape parameter equals one. The Weibull 

distribution has many applications in survival analysis and 

reliability engineering, for reference see Lai et.al (2006). 

Some other applications in industrial quality control are 

discussed in Berrettoni (1964). 

 

 

 

II. SOME BASIC DEFINITIONS AND K-GENERALIZED 

EXPONENTIAL DISTRIBUTIONS 

 

We begin with some definitions which provide a base for 

the definition of K-Generalized Exponential Distributions. 

 The Euler gamma function )(  is defined by the 

integral  

 



0

1)( dtet t  ,   .0)(R   

For a random variable X  is said to have gamma 

distribution with parameter 0 , if its p.d.f. is given by  
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Replacing x  by 


x
, we get the following form of gamma 

distribution with parameters  ,  with 0  and 0 , 
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Abstract: The main purpose of this paper is to present k-Generalized Exponential Distribution which among other 

things include Generalized Exponential and Weibull Distributions as special cases. Besides, we also obtain three 

parameters extension of Generalized Exponential Distribution. We shall also discuss moment generating functions 

(m.g.f’s) of these newly introduced distributions. 
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The Gamma distribution with parameters  , often 

arises in practices, as the distribution of time one has to wait 

until a fixed number of events have occurred.  

 The beta function of two variables m and n is defined 

by  

 ),( nm   xdx
m

x
n 1

1
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In the literature (for reference see [1-3]), it is known that  
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 A continuous random variable X  is said to have beta 

distribution with parameter m and n , if its p.d.f. is given 

by    
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This distribution is known as beta distribution of 1
st
 kind 

(for reference see [2]). 

The beta distribution has an application to model a 

random phenomenon whose set of possible values is a finite 

interval [a, b], which by letting a  denote the origin and taking 

)( ab  as a unit measurement can be transformed into the 

interval [0, 1]. 

 A continuous random variable X  is said to have beta 

distribution of 2
nd

 kind with parameter m and n , if its 

p.d.f. is given by    
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   = 0,     elsewhere.  

 More recently, G.Rahman, S.Mubeenet.al.,[2] (for more 

details see [3-11]) have defined k-gamma and k-beta 

distributions and their m.g.f’s as follows: 

For 0k  and z ₵, the k-gamma function is defined 

by the integral  
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For the sake of completeness, we present a very simple 

proof of the relation (4). 
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Since the integrals involved are convergent, we have 
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Using (5) and (6), we get  
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This completes the proof of the relation (4). 
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Putting the value of  2/,2/ kkk  in (7), we get  
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A random variable X of continuous type is said to have 

Weibull distributionif its probability density function is given 

by 
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Weibull distribution is widely used in engineering 

practice due to its versatility. It was originally proposed for the 

interpretation of fatigue data but now it is also used for many 

other problems in engineering. In particular in the field of life 

phenomenon, it is used as the distribution of life time of some 

object, particularly when the “weakest link” model is 

appropriate for the object, that is, consider an object consisting 

of many parts and suppose that the object experiences death 

(failure) when any of its parts fail. It has been shown [1] (both 

the oretically and empirically) under these conditions that 

Weibull distribution provides a close approximation to the 

distribution of the life time of the item. 

The Gamma and Weibull distributions are commonly 

used for analyzing any life time data or skewed data. Both 

distributions have nice physical interpretation and several 

desirable properties. Unfortunately both distributions have 

drawbacks, one major disadvantage of the gamma distribution 

is that the distribution function or the survival function cannot 

be computed easily if the shape parameter is not an integer. By 

using mathematical tables or computer software one obtains 

the distribution function, the survival function or hazard 

function. This makes the gamma distribution unpopular as 

compared to Weibull distribution whose distribution function, 

hazard function or survival function is easy to compute. It is 

well known that even though the Weibull distribution has 

convenient representation of distribution function, the 

distribution of the sum of independent and identically 
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distributed (i.i.d) Weibull random variables is not simple to 

obtain. Therefore, the distribution of the mean of random 

sample from Weibull distribution is not easy to compute 

whereas the distribution of sum of independent and identically 

distributed (i.i.d) gamma random variables is well known. For 

more details see Mudholkar, Srivastava and Freimer (1995), 

Mudholkar and Srivastava (1993), Gupta and Kundu (1997) 

and Gupta R.C (1998). 

Recently R.D. Gupta and D.Kundu have introduced three 

parameter Exponential Distribution (location, scale, shape) 

and study the theoretical properties of this family and 

compared them with respective well studies properties of 

Gamma and Webull distributions. The increasing and 

decreasing hazard rate of the Generalized Exponential 

Distribution (GED) depends on the shape parameter. 

Generalized Exponential Distribution (GED) has several 

properties that are quite similar to gamma distribution but it 

has distribution function similar to that of the Weibull 

distribution which can be computed easily. Since the 

Generalized Exponential family has the likelihood ratio 

ordering on the shape parameter, one can construct a 

uniformly most powerful test for testing one sided hypothesis 

on the shape parameter when the scale and location parameters 

are known. 

III. A continuous random variable X whose probability 

density function (p.d.f.)  is given  by  
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introduced by R.D.Gupta and D.Kundu [10] has p.d.f. 
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following form of Generalized Exponential Distribution 

(GED). 
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 The main aim of this paper is to present interesting 

extensions of Generalized Exponential Distribution 

(GED) in various ways and to study their moment 

generating functions (m.g.f’s).We shall first define 

Generalized Exponential Distribution (GED) in terms of a 

new parameter k>0 and call it k-Generalized Exponential 

Distribution (k-GED). In fact, we prove the following 

result, which included Generalized Exponential 

Distribution asa special case. 

THEOREM 1: Let X  be a random variable of continuous 
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is the probability density function of random 

variable X of continuous type. 
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Generalized Exponential Distribution. 
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Hence ),,,( kxf   is a p.d.f. of random variable X of 

continuous type.  
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IV. THE MOMENT GENERATING FUNCTION (M.G.F) 

OF THEOREM 1 

 

In this section, we derive m.g.f. of the random variable X  

having kGeneralized Exponential Distribution (k-GED) in 

terms of new parameter k>0, we have  
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 Our next theorem is also a generalization of Exponential 

distribution in terms of new variable k, which includes 

Weibull distribution as a special case.  

THEOREM 2: Let X  be a random variable of continuous 

type and let ,0 ,0  and 0k  be the parameters, 

then the function  
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is the probability density function (p.d.f.) of random 

variable X  of continuous type. 

REMARK (2.1): For 1k , K-Generalized Exponential 

Theorem 2 reduces to Classical Exponential Distribution. 
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Hence ),,,( kxf   is a p.d.f. of random variable X  of 

continuous type.  

REMARK (2.2): Weibull distribution is a special case of 

Theorem 2. 
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is a p.d.f. of X, which is clearly the density of Weibul 

Distribution.  

 

 

V. THE MOMENT GENERATING FUNCTION (M.G.F) 

OF THEOREM 2 

 

In this section, we derive m.g.f. of the random 

variable X having kGeneralized Exponential Distribution 

(k-GED) in terms of a new parameter k>0, we have  
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Next we present the following three parameters extension 

of Generalized Exponential Distribution (GED). In fact, we 

prove 

THEOREM 3: Let X  be a continuous random variable, 

then the function 
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       = 0,    otherwise 

is the p.d.f. of random variable X  of continuous type. 
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This shows that )(xf  is a p.d.f. of the random 

variable X . This proves theTheorem 3. 

If we replace   by 


1
 and x  by )( x in Theorem 3, 

we get the following form of Generalized Exponential 

Distribution (GED). 
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 x , ,0 0 , ,0 10   . 

                     = 0,  otherwise. 

REMARK (3.1): For 1 , Theorem 3 reduced to 

Generalized Exponential Distribution (GED). 

REMARK (3.2): Taking 1  in (12), we get relation 

(10). 

 

 

VI. THE MOMENT GENERATING FUNCTION (M.G.F) 
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which is the p.d.f. of the exponential distribution.  
 

Finally we present the following more general interesting 

result which among other things includes Weibull 

distribution as a limiting case. 
 

THEOREM 4: Let X  be a random variable of continuous 
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This shows that ),,,( kxf   is the p.d.f. of random 

variable X  of continuous type. This proves Theorem 4. 
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is a p.d.f. of X, which is clearly density of Weibull 

distribution. 

 

 

 

VII. CONCLUSIONS 

 

In this paper the authors conclude the following: 

 Weibull distribution is a special case of k -Generalized 

Exponential Distribution. 

 Also if  tends to 1, then our newly introduced 3 

parameter extension of Generalized Exponential 

Distribution (GED) reduced to classical Exponential 

Distribution. 

 Further if  tends to 0, then our lastly proved more 

general result leads to Weibull distribution. 

 The moment generating functions (m.g.f’s) obtained in 

this paper generalize the classical moment generating 

functions (m.g.f’s) of the given distributions. 
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