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I. INTRODUCTION 

 

Free convection fluid flow and heat transfer occurs in 

many industrial and engineering systems such as solar energy 

collectors, home ventilation systems, energy storage systems, 

refrigeration unit, fire prevention etc.  In general increasing, 

controlling, and modification of fluid flow and heat transfer 

inside the differentially heated cavities is down using a 

partition or fin attached to the walls of the cavity. Many 

researchers have investigated natural convection inside 

cavities with fin on the walls. Frederick [1] studied 

numerically natural convection in a square enclosure with a 

thin partition placed at the middle of its cold wall. Decreasing 

heat transfer of up to 47 percent in comparison with the cavity 

with no partition was observed in this study. Frederick and 

Valencia [2] studied heat transfer in a square cavity with a 

conducting partition located at the middle of its hot wall using 

numerical simulation. They observed that for a low value of 

the partition-to-fluid thermal conductivity ratio and for 

Rayleigh numbers from 10
4
 to 10

5
 a reduction in heat transfer 

relative to the case of cavity with no partition occurs. Scozia 

and Frederick [3] studied numerically heat transfer in a tall 

cavity with multiple conducting fins on the cold wall. They 

found that as the inter fin aspect ratio is varied from 20 to 

0.25, the flow patterns evolve considerably and the average 

Nusselt number reaches maximum. Nag et al. [4] investigated 

the effect of a horizontal thin partition placed on the hot wall 

of a horizontal square cavity. They observed that for a 

partition of infinity thermal conductivity the Nusselt number 

on the cold wall was greater than the case with absence of fin. 

Lakhal et al. [5] studied that the natural convection in inclined 

rectangular enclosures with perfectly conducting fins attached 

to the heated wall.  

Bilgen [6] investigated natural convection in cavities with 

partial partitions positioned on the insulated horizontal walls. 

He found that the heat transfer was reduced when two 

partitions were used instead of one, the aspect ratio was made 

smaller, and the position of partitions was farther away from 

the hot wall. Shi and Khodadadi [7] reported the results of a 

numerical study of laminar natural convection in a 

differentially heated square cavity due to a perfectly 

conducting thin fin on its hot wall. They found that heat 

transfer on the cold wall without fin can be promoted for high 

Rayleigh numbers and with the fins placed closer to the 

insulated walls. Tasnim and Collins [8] has been studied 

numerically the heat transfer in a square cavity with a baffle 
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on the hot wall. Xu and Patterson et al. [10, 11] 

experimentally studied the thermal flow around a square 

obstruction on a vertical wall in a differentially heated cavity 

and also investigated the effect of the thin fin length on the 

transition of the natural convection flows in a differentially 

heated cavity. Liu, Lie and Patterson [12] investigated 

transient natural convection around a thin fin on the side wall 

of a differentially heated cavity. 

Based on these above mentioned articles it was found that 

to increase the rate of heat transfer inside the differentially 

heated cavities a highly conductive fin can be attached to the 

walls of the cavity. In the present study natural convection at 

various Rayleigh numbers the fluid flow and heat transfer in a 

differentially heated rectangular cavity with a fin attached to 

its cold wall is simulated numerically by using Galerkin finite 

element method. To convert the partial differential equations 

into a matrix form of equations which are solved iteratively 

with the help of a computer code.  A three nodded triangular 

elements is used to divide the physical domain into smaller 

segments.  

 

 

II. MATHEMATICAL FORMULATION 

 

We consider the natural convective flow of a fluid in a 

rectangular cavity of width W and height H (H>W) filled with 

a fluid. The left vertical wall of the cavity is kept at a constant 

temperature while  its right vertical wall is maintained at 

temperature Tc and Th ( ch TT  ) top and the bottom 

horizontal walls are kept insulated. A highly conductive thin 

fin is attached to the cold wall the length and the location of 

the thin fin on the right wall are shown with l and s 

respectively.  

 
Physical configuration 

The dimensionless variables L = l/W and S = s/H are 

defined as the length and location of the thin fin respectively. 

The aspect ratio of the cavity is defined as Ar = H/L it is 

assumed that the fin is highly conductive and is maintained at 

the same temperature of the wall to which it is attached. The 

fluid inside the cavity is considered to be incompressible and 

the two-dimensional flow is assumed to be steady and laminar. 

The properties of the fluid are assumed to be constant with the 

exception of the density which varies according to the 

Boussinesq approximation. Under these above specified 

geometrical and physical conditions is governed by the 

momentum and energy can be written as 

Continuity equation: 

                                               (2.1) 

Heat equation: 

 (2.2) 

Energy Equation: 
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With boundary conditions 

u (x , 0) = u(x, L) = u(0 , y) = u(L , y) = 0, 
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The Continuity equation (2.1) can be satisfied 

automatically by introducing the stream function „‟ as 

  u =
y


   and     v = 

x





                                 (2.4) 

where x and y are the distances measured along the 

horizontal and vertical directions respectively; u and v are the 

velocity components in the x and y- directions respectively; T 

denotes the temperature;  - kinematic viscosity;  - thermal 

diffusivity; K is the medium permeability; P is the pressure;  

is the density; Th and Tc are the temperatures at hot vertical 

wall and cold vertical walls respectively; L is the length of the 

conductive thin fin. 

Using the following change of variables, 
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The  governing  equations  (2.1), (2.2) and (2.3)  reduced  

to  non-dimensional  form  and  introducing  stream function 

(2.4) we have, 
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                             (2.7) 

With the non dimensionless boundary conditions are 

U (X , 0) = U(X, 1) = U(0 , Y) = U(1 ,Y) = 0, 

V (X , 0) = V(X, 1) = V(0 , Y) = V(1, Y) = 0, 

  (X, 0) =1,    or     (X, 0) =  ,sin x ,     
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Here X and Y are dimensionless coordinates varying 

along horizontal and vertical directions; U and V are 

dimensionless velocity components along X and Y-directions; 

  is the dimensionless temperature; P is the dimensionless 

pressure; Ra, Pr and Ar are Rayleigh number, Prandtl number 

and Aspect ratio respectively. 

 

NUSSELT NUMBER (Nu) 

 

The ratio of the conductive thermal resistance to the 

convective thermal resistance of the fluid is called Nusselt 

number. This is written as   Nu =  . 

 

RAYLEIGH NUMBER (Ra) 

 

The ratio of the apparent conductivity to the true 

molecular conductivity is a function, which is the product of 

Grashof number and prandtl number. This function is referred 

as the Rayleigh number.   

                    i.e.,    Ra = . 

 

GRASHOF NUMBER (Gr) 

 

It plays a significant role in the natural convection heat 

transfer, the ratio of the product of the internal force and the 

buoyant force to the square of viscous force in the convective 

flow system is interpreted as Grashof number. In free 

convection, it is analogous to Reynolds number in forced 

convection.  

 

PRANDTL NUMBER (Pr) 

 

The ratio of the kinetic viscosity ( ) to the thermal 

diffusivity ( ) of a fluid is called Prandtl number. 

 

 

III. NUMERICAL SOLUTION 

 

In the present study, we have predominantly used Galerkin 

Finite Element Method (FEM) except for one case in which 

Finite difference method was utilized, as it was particularly 

suitable for that case. The following sections enlighten the 

Finite element method and present its application to solve the 

above-mentioned equations. 

FEM can be comprised roughly 5 steps to solve the 

particular problem. The steps are as follows. 

 DESCRITIZING THE DOMAIN: This step involves the 

division of whole physical domain into smaller segments 

known as elements, and then identifying the nodes, 

coordinates of each node and ensuring proper connectivity 

between the nodes. 

 SPECIFYING THE EQUATION: In this step, the 

governing equation is specified and an equation is written 

in terms of nodal values 

 DEVELOPMENT OF GLOBAL MATRIX: The equations 

are arranged in a global matrix which takes into account 

the whole domain 

 SOLUTION: The equations are solved to get the desired 

variable at each table in the domain 

 EVALUATE THE QUANTITIES OF INTEREST: After 

solving the equations a set of values is obtained for each 

node, which can be further processed to get the quantities 

of interest.  

There are varieties of elements available in FEM, which 

are distinguished by the presence of number of nodes.  The 

present study is carried out by using a simple 3-noded 

triangular element. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Typical triangular element 

Let us consider that the variable to be determined in the 

triangular area is „ ‟. The polynomial function for „ ‟ can be 

expressed as: 

  = 1 + 2 x + 3y      

The variable   has the value  i,  j and  k at the nodal 

position i, j and k of the element. The x and y coordinates at 

these points are xi, xj, xk and yi, yj and yk respectively. 

Substitution of these nodal values in , helps in determining 

the constants 1 , 2 , 3  which are: 

1 = 
1
/2A [(xj yk – xk yj )  i + (xk yi – xi yk)  j + (xi yj – xj 

yi)  k ]  

2 = 
1
/2A [(yj  - yk )  i + (yk – yi )  j + (yi – yj )  k ]  

3 = 
1
/2A [(xk  - xj )  i + (xi – xk )  j + (xj – xi )  k ]  

where  A is area of the triangle given as 
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 Substitution of 1, 2, 3 in   and the mathematical 

arrangement of the terms results changed into  
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Where   Ni, Nj and Nk are the shape functions given by  
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The triangular element can be subdivided into three 

triangles with a point in the center of original triangle.                                                                                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub triangular areas 

 

Defining the new area ratios as 
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It can be shown that 

L1 = N1 ; 2L  = N2 and 3L  = N3  

Please note that the nodal terms i, j & k are replaced by 1, 

2 & 3 respectively in subsequent discussions for simplicity. 

The momentum and heat energy balanced equations are 

solved using the Galerkin finite element method. Continuity 

equation will be used as a constraint due to mass conservation 

and this constraint may be used to obtain the pressure 

distribution. In order to solve equations, we use the finite 

element method where the pressure P is eliminated by a 

penalty parameter    and the incompressibility criteria given 

by equation (2.5) which results in
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The continuity equation (2.5) is automatically satisfied for 

large values of .  

Application of Galerkin method to equation (2.6) yields: 
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Where R
e 
is the residue. 

Considering the terms individually 
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Thus the whole equation (2.8) can be written in matrix 

form as 
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Application of Galerkin method to equation (2.7) yields: 

  
(2.16)
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Thus the whole equation (2.16) can be written in matrix 

form as 
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IV. RESULTS AND DISCUSSIONS 

 

Numerical results have been presented in order to 

determine the effects of presence of dimensionless parameters 

in a rectangular cavity. The dimensionless governing 

parameters which are specifically Nusselt numbers (Nu), 
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Aspect ratios (Ar), Rayleigh numbers (Ra), Prandtl number 

(Pr) and physical parameters length of the thin fin (L) and 

position of the fin on the cold wall(S).The presentation of the 

results have been started with streamlines and isotherms for 

various Rayleigh numbers and different position S= 0.25,0.5 

and 0.75 and also for different Aspect ratios Ar= 4,2,1,0.5 and 

0.25 having different fin lengths L= 0.5,0.75 and positions for 

fixed Pr = 1 is considered. 

-0.7

-0
.7

-0.7

-0.6 -0.6

-
0

.6

-0.6

-0.6

-0
.5 -0.5

-0.5

-0.5

-0.5

-0
.5

-
0

.4

-0.4
-0.4

-0
.4

-0.4

-0
.4

-
0
.
3

-0.3
-0.3

-
0

.3

-0.3-0
.3

-0
.3

-0.2 -0.2 -0.2

-
0

.2

-0
.2

-0.2

-0
.2

-0
.2

-0
.1

-0.1 -0.1

-0
.1

-
0

.1

-0.1-0.1

-0
.1

-0
.1

0

0 0 0

0
0

0

00

0

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.1

0.1

0.1

0
.2

0.2

0
.3

0.3

0
.
4

0.40.50.60.70.8

0
.
9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
(a) 

-1
.4 -1.4

-1.4

-1
.2 -1.2

-1
.2

-1.2

-1.2

-1
-1

-1

-1

-1

-1

-0.8
-0.8

-0.8

-0
.8

-0.8

-0
.8

-0
.6

-0.6
-0.6

-0
.6

-0.6-0
.6

-0
.6

-0.4 -0.4
-0.4

-0
.4

-0.4

-0.4

-0
.4

-0
.4

-0.2 -0.2 -0.2

-0
.2

-0
.2

-0.2
-0.2

-0
.2

-0
.2

0

0 0 0

0
0

000

0

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.1

0.10.1

0
.2

0.2

0
.3

0.3

0
.4

0
.5

0
.6

0
.70
.8

0
.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
(b) 

-3

-3

-3

-3

-2.5
-2.5

-2
.5

-2.5

-2
.5

-2.5

-2 -2

-2

-2

-2

-2

-2

-1
.5 -1.5

-1.5

-1
.5

-1.5

-1.5

-1
.5

-1
.5

-1

-1
-1

-1

-1

-1

-1

-1

-0.5 -0.5 -0.5

-0
.5

-0
.5

-0.5

-0
.5

-0
.5

-0
.5

0

0 0 0

0

0
00

0

0

0

0
.5

0.5

0.
5

0
.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0
.1

0.1

0.
1

0.
1

0.
2

0.2

0.2

0
.30.3

0.
4

0.4 0.5

0
.6

0
.7

0
.8

0
.91

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
(c) 

Figure 1: Contour plots for various Ra and different fin's S = 

0.25. Clockwise and anti-clockwise flows are shown via 

negative and positive signs of stream functions (Left) and 

Isotherms (Right) respectively 

Figs. 1 shows the streamlines and the isotherms for a 

square cavity with a fin at its lower position (S = 0.25), and for 

various Ra and different lengths of the fin, L = 0.25, 0.5 and 

0.75, respectively. 

For the all values of Ra, a large clockwise (CW) rotating 

cell is observed for all fin lengths. The fluid that is heated next 

to the hot wall (left wall) rises and replaces the cooled fluid 

next to the cold wall (right wall) that is falling, thus giving rise 

to a CW rotating vortex (also called the primary vortex).  

Due to this figure, as the Rayleigh number increases, the 

flow patterns and the temperature distribution change from the 

conduction to convection dominated regime for all the L 

values. It seems that the various lengths of the fin not only 

change the flow fields near the fin, but they also relatively 

change the strength of the CW vortex. This is because the fin 

blocks the movement of the fluid and weakens the CW vortex. 

The flow and the temperature fields in the cavity, due to the 

streamlines and the isotherms, are presented.  

In Fig. 2 for the middle position of a fin (S =0.5), and Fig. 

3 for a fin at its upper position (S = 0.25) have been discussed. 
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Figure 2: Contour plots for various Ra and different fin's S = 

0.5. Clockwise and anti-clockwise flows are shown via 

negative and positive signs of stream functions (Left) and 

Isotherms (Right) respectively 
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Figure 3: Contour plots for various Ra and different fin's S = 

0.75. Clockwise and anti-clockwise flows are shown via 

negative and positive signs of stream functions (Left) and 

Isotherms (Right) respectively 

By increasing the Rayleigh number, similar treatment 

corresponding to the flow and temperature distribution can be 

seen between these figures and those of Fig. 1, respectively.  

By comparing all the cases in Figs. 1,2,3,  it is possible to 

see that a fin attached to the middle of the wall has the most 

remarkable effect on the fluid flow in the cavity. A fin 

redirects the movement of the fluid and weakens the fluid 

motion within the area under the fin for S < 0.5, whereas it 

weakens the fluid motion within the area above the fin while S 

≤ 0.5.    

 

 

V. EFFECT OF RAYLEIGH NUMBER 

 

For Ra = 10
4
, the streamlines and the isotherms near the 

fin exhibit similar trends as those for Ra = 10
3
, and in some 

instances, the flow field exhibits two local minima that may be 

reminded for the common cases of a cavity with no fin. At the 

moderate Rayleigh numbers (Ra = 10
5
), the boundary layer 

regime is developed towards the cavity walls and for higher 

Ra, the convective mode of heat transfer is dominated 

throughout the cavity. Moreover, the more packed stream 

function Rayleigh number increases. For the case of Ra = 10
4
 

(convection not being strong compared to conduction), 

presence of the fin brings resistance to the motion of the CW 

vortex and it has the most remarkable effects on the flow field 

when it is placed at the middle of the left wall.  

 
Figure 4: Variation of the Nu along the heated wall of the 

cavity with respect to position of the fin with Ra= 10
4
 

 

 
 

Figure 5: Variation of the Nu along the heated wall of the 

cavity with respect to position of the fin with Ra= 10
5
. 

It is observed that for the case of Ra = 10
5
 (convection 

dominating conduction), a fin can block the flow, thus 

weakening the primary vortex, but at the same time a long 

enough cold fin can cools the fluid and make it lighter 

resulting in enhancement of the CW vortex. These two 

mechanisms are found to certainly counter balance each other 

for nearly the fin's middle position, regardless of the fin‟s 

length. 

 
Figure 6: Variation of the Nu along the heated wall of the 

cavity with respect to position of the fin with Ra= 10
6
 

At Ra = 10
6
, given the strong effect of free convection 

implies that placing a fin of any length can always enhance the 

primary vortex regardless of its position. It should be noted 

that at Ra = 10
6
 the fin‟s effect of blocking the fluid motion is 

more dominant than effect of cooling the fluid to enhance the 

primary vortex. 

Figures 4, 5 and 6 shows the variations of NNR with 

respect to the fin‟s position for three different lengths of the 

fin, L = 0.25, 0.5, and 0.75 for Ra = 10
4
 to 10

6
, respectively. 

Based on these figures, it is observed that placing a fin on the 

right wall always increases the heat transfer in cavity, except 

that for Ra = 10
4
, when L = 0.5, and 0.25 ≤ S ≤ 0.5. For Ra = 

10
4
, the effect of the fin's length on the mean heat transfer is 

more remarkable for longer fin's lengths, regardless of the fin's 

position, S. See that the effect of the fin‟s length on NNR 

becomes less remarkable with the rise of the Rayleigh number 

due to the fact that these three curves come closer. This is 

because the effect of the cold fin cooling the flow and 

enhancing the primary vortex can compensate the effect of the 

fin blocking the flow. 

 

N
u

 

N
u

 
N

u
 



 

 

 

Page 313 www.ijiras.com | Email: contact@ijiras.com 

 

International Journal of Innovative Research and Advanced Studies (IJIRAS) 

Volume 3 Issue 11, October 2016 

 

ISSN: 2394-4404 

VI. EFFECT OF TEMPERATURE FIELDS 

 

The value of θ on the left wall is 1. Comparing these 

figures for Ra = 10
6
, a fin with L = 0.25 at most positions only 

changes the temperature distribution locally and the rest of the 

cavity remains unaffected. This is because the CW vortex has 

not altered too much upon introduction of a 0.2 W long fin and 

the fin only changes the velocity distribution locally. As 

mentioned before, a fin at S < 0.5 can weaken the fluid motion 

in the area below the fin and thus decreased heat transfer 

capability is expected. 
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(c) 

Figure 7: Contour plots for inside the rectangular cavity with 

Ar = 4 having a fin with L = 0.5 and S = 0.75 for Pr = 1 and 

various Ra. Clockwise and anti-clockwise flows are shown via 

negative and positive signs of stream functions (Left) and 

Isotherms (Right) respectively 

 

Streamlines and isotherms for the cavity with Ar = 4 for 

different Rayleigh numbers are shown in Fig. 7. It is evident 

from the figure that for all Rayleigh numbers considered, two 

eddies are developed inside the enclosure which with an 

increase in Rayleigh number, the eddy located over the fin 

becomes weaker than that located under the fin. From the 

isotherms, a conduction dominant heat transfer is observed at 

Ra = 10
4
 and 10
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Figure 8: Contour plots for inside the rectangular cavity with 

Ar = 2 having a fin with   L = 0.75 and S = 0.75 for Pr = 1 

and various Ra. Clockwise and anti-clockwise flows are 

shown via negative and positive signs of stream functions 

(Left) and Isotherms (Right) respectively 
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At Ra = 10
6
 thermal boundary layers are formed adjacent 

to the vertical walls and thermal stratification occurs in the 

region over the fin Variations of streamlines and isotherms 

inside the cavity with Ar = 2 versus Rayleigh number are 

shown in Fig. 8. It is observed that at Ra = 10
4
 a clockwise 

eddy is formed under the fin and the fluid existing over the fin, 

is relatively stagnant. By increasing the buoyancy force at Ra 

= 10
5
, a weak eddy is developed over the fin. Further increase 

in buoyancy force at Ra = 10
6
 the strength of the eddy under 

the fin increases and it penetrates over the fin. Based on the 

isotherms it is evident that at Ra = 10
4
 the heat transfer occurs 

mainly through conduction while with further increase in the 

Rayleigh number, the isotherms become more condensed 

adjacent to the vertical walls which is the characteristics of the 

natural convection. 
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Figure 9: Contour plots for inside the rectangular cavity with 

Ar = 1 having a fin with L = 0.5 & S = 0.75 for Pr = 1 and 

various Ra. Clockwise and anti-clockwise flows are shown via 

negative and positive signs of stream functions (Left) and 

Isotherms (Right) respectively. 

Fig. 9 shows streamlines and isotherms inside the cavity 

with Ar = 1 at different Rayleigh numbers. Similar to the 

results of the cavity with Ar = 2, at Ra =10
4
 the fluid over the 

fin is relatively stagnant and there is only an eddy under the 

fin. By increasing Rayleigh number, this eddy becomes 

stronger and penetrates over the fin. The mentioned 

observations about the isotherms of the cavity with Ar = 2 are 

valid here. 
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Figure 10: Contour plots for inside the rectangular cavity with 

Ar = 0.5 having a fin with   L = 0.75 and S = 0.75 for Pr = 1 

and various Ra. Clockwise and anti-clockwise flows are 

shown via negative and positive signs of stream functions 

(Left) and Isotherms (Right) respectively 
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Figure 11: Contour plots for inside the rectangular cavity with 

Ar = 0.25 having a fin with L = 0.75 and S = 0.75 for Pr = 1 

and various Ra. Clockwise and anti-clockwise flows are 

shown via negative and positive signs of stream functions 

(Left) and Isotherms (Right) respectively 

The streamlines and isotherms inside the cavities with Ar 

= 0.5 and 0.25, at different Rayleigh numbers are shown in 

Figs. 10 and 11, respectively. As can be seen from the figures 

for two cavities with different aspect ratios, at Ra = 10
4
 a 

clock wise eddy is developed under the fin. By increasing 

Rayleigh number the eddy penetrates over the fin and its 

central region is elongated horizontally. Conduction dominant 

heat transfer at Ra = 10
4
 and formation of thermal boundary 

layers adjacent to the vertical walls at high Rayleigh numbers, 

is observed. 

 

 

VII. EFFECT OF AVERAGE HEAT TRANSFER 

 

 In order to study the effect of the fin on the average heat 

transfer rate in the cavity, a variable named NNR is used 

which can be obtained. Value of NNR greater than 1 indicates 

that the heat transfer rate is enhanced in the cavity, whereas 

reduction of heat transfer is indicated when NNR is less than 1.  

 

 

VIII. EFFECT OF NUSSELT NUMBER ON PRANDTL 

NUMBER AND ASPECT RATIOS 

 

Variations of NNR with respect to Rayleigh number for 

different Prandtl numbers are shown in Fig. 12. According to 

the figure, as the cavity becomes narrower, the effect of fin on 

enhancement of heat transfer increases. 

 
     

Figure 12: Variation of Nu along the heated wall of the cavity 

having a fin with L = 0.75 and S = 0.5 versus Pr. 

 
    Figure 13: Variation of Nu along the heated wall of the 

cavity having a fin with L= 0.75 and S = 0.75 versus Ar 

 

 

IX. CONCLUSIONS 

 

 For the all values of Ra, a large clockwise (CW) rotating 

cell is observed for all fin lengths. 

 The Rayleigh number increases, the flow patterns and the 

temperature distribution change from the conduction to 

convection dominated regime for all the L values. It 

    Nu 
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seems that the various lengths of the fin not only change 

the flow fields near the fin. 

 The presence and the character of the primary CW 

rotating vortex is unaltered, with longer fin bringing about 

more changes to the flow compared to a shorter fin.  

 The strong effect of free convection implies that placing a 

fin of any length can always enhance the primary vortex 

regardless of its position. 

 At the higher Rayleigh numbers, the temperature contours 

above the fin are more packed than those under the fin. 

This implies better heat transfer on the top surface of the 

fin than on the bottom surface for almost all mentioned 

values of S. 

 For longer fins, the temperature contours to the left of the 

fin are affected by the introduction of the fin. 

 The average Nusselt number can be obtained from the 

product of NNR and average Nusselt number for a no-fin 

cavity 

 The heat transfer occurs mainly through conduction while 

with further increase in the Rayleigh number, the 

isotherms become more condensed adjacent to the vertical 

walls which is the characteristics of the natural 

convection. 

 Variations of NNR with respect to Rayleigh number for 

different Prandtl numbers, as the cavity becomes 

narrower, the effect of fin on enhancement of heat transfer 

increases. 
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