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I. INTRODUCTION 

 

A natural convection flow in a rectangular cavity has 

many engineering and geo-physical applications with different 

heating locations. In the fields like solar energy collection and 

cooling of electronic components, the active walls may be 

subject to abrupt temperature non-uniformities due to shading 

or other effects. With a view to understand the above problem, 

we shall first look into the studies related to the above 

problem. The effect of   aspect ratio on flow structure and the 

convective heat transfer in a rectangular porous cavity is 

numerically analyzed by Prasad and Kulacki [1] Multicellular 

flow has been found for Ar ≤ 1 and the flow structure 

comprises a primary recirculating cell with smaller secondary 

cells inside. Paolucci and Chenoweth [2] studied the natural 

convection in shallow enclosures with differentially heated 

end walls. They find that the classical parallel flow solution, 

accurate in the core of the cavity in the Boussinesq limit, does 

not exist when variable properties are introduced. 

Ho and Chang [3] numerically and experimentally studied 

the effect of aspect ratio of natural convection heat transfer in 

a vertical rectangular enclosure with two-dimensional discrete 

heating. Numerical simulation is conducted for aspect ratio 

varying from 1 to 10 with given relative heater size and 

location. From the numerical simulation, they find that the 

effect of enclosure aspect ratio on the average Nusselt number 

of the discrete heaters tends to decrease with the increase of 

the modified Rayleigh number. R.L. Frederick [4] concludes 

the Nusselt number decreases rapidly with increasing aspect 

ratio and the circulation rate increases always with the 

Rayleigh number and with aspect ratio by the investigation of 

a numerical study of natural convection of air in rectangular 

cavities. Wakitani [6] numerically presented the three 

dimensional oscillatory natural convection at low Prandtl 

number in rectangular enclosures. His numerical results 

agreed with available experimental results. 

The effect of the surface waviness and aspect ratio on heat 

transfer inside a wavy enclosure is studied numerically by Das 

et al. [7]. It shows that the heat transfer is changed 

considerably when the surface waviness changes and also 

depends on the aspect ratio of the domain. Effect of the aspect 

ratio of thermal–fluid transport phenomena in cavities under 

reduced gravity is studied numerically by Torii [8]. Valencia 

and R.L.Frederick [9] have investigated the natural convection 

of air in a square cavity with partially active vertical walls for 

five different heating locations. The heat transfer rate is 

enhanced when heating location is at the middle of the hot 

wall. El-Refaee et al. [10] have studied numerically natural 

convection in a partially cooled, differentially heated tilted 

cavities with different aspect ratios. Deng et al. [11] have 
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investigated a combined temperature scale for analyzing 

natural convection in a rectangular enclosure with discrete 

wall heat sources. They conclude that the role of isothermal 

heat sources is generally much stronger than the flux of heat 

sources. Nithyadevi et al. [12] studied natural convection in a 

square cavity with partially active vertical walls. Kandaswamy 

et al. [13] investigated maximum density effects of water in a 

square cavity with partial thermally active side walls.  

In view of these, we studied a natural convection in a 

rectangular cavity with partially active side walls for different 

heating locations. That is, for the hot region located at the top, 

middle and bottom and the cold region moved from bottom to 

top, to locate the regions where the heat transfer rate is 

maximum and minimum. The Galerkin Finite Element 

Method has been used to convert the partial differential 

equations into a matrix form of equations, which can be solved 

iteratively with the help of a computer code. A three nodded 

triangular elements is used to divide the physical domain into 

smaller segments, which is a pre-requisite for finite element 

method.   Numerical results are presented in terms of stream 

functions and isotherms, which shows the effect of the aspect 

ratio with different heating locations of the side walls. The 

mid-height velocity profile of the middle-middle heating 

locations for different aspect ratios Ar = 1, 3, 5, 10 and Gr = 

10
5 
are discussed. 

 

 

II. MATHEMATICAL FORMULATION 

 

We consider the laminar convective flow of a fluid in a 

rectangular cavity of length L and height H filled with a fluid 

under investigation. The partially thermally active side walls 

of the cavity are maintained at two different but uniform 

temperatures, namely, hT  and CT  ( hT  > CT ), respectively. 

The inactive parts of the side walls and horizontal walls x = 0 

and x = H are thermally insulated. For different heart regions 

will be studied here. That is, for the hot region located at the 

top, middle and bottom, assume a cold region moved from 

bottom to top. The length of the thermally active part is H/2. 

Representing the position through Cartesian coordinate system 

and assuming all other fluid properties to be constant, the flow 

of an incompressible Boussinesq viscous fluid.  

Under the above specified geometrical and physical 

conditions is governed by the momentum and energy can be 

written as 
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The Continuity equation (2.1) can be satisfied 

automatically by introducing the stream function ‘’ as 

  u = 
y


  and       v =

x





                  (2.4)  

where x and y are the distances measured along the 

horizontal and vertical directions, respectively; r and z are the 

velocity components in the x- and y- directions, respectively; 

T denotes the temperature;  and   are kinematic viscosity 

and thermal diffusivity, respectively; K is the medium 

permeability; P is the pressure and  is the density; Th and Tc 

are the temperatures at hot bottom wall and cold vertical walls, 

respectively; L is the side of the square cavity. 

 Using the following change of variables, 
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The governing equations (2.1)-(2.3) reduce to non-

dimensional form and introducing stream function 
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With the non dimensionless boundary conditions are 
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Here X and Y are dimensionless coordinates varying 

along horizontal and vertical directions, respectively; U and V 

are, dimensionless velocity components in the X- and Y-

directions, respectively;   is the dimensionless temperature; P 

is the dimensionless pressure; Gr, Pr and Ar are Grashof 

number, Prandtl number and Aspect ratio respectively. 
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III. SOLUTION OF THE GOVERNING EQUATIONS 

 

Thus far we have derived the partial differential equations, 

which describe the heat and fluid flow behavior in the vicinity 

of porous medium. The development of governing equations is 

one part but the second and important part is to solve these 

equations in order to predict the various parameters of interest 

in the porous medium. There are various numerical methods 

available to achieve the solution of these equations, but the 

most popular numerical methods are Finite difference method, 

Finite volume method and the Finite element method. The 

selection of these numerical methods is an important decision, 

which is influenced by variety of factors amongst which the 

geometry of domain plays a vital role. Other factors include the 

ease with which these partial differential equations can be 

transformed into simple forms, the computational time required 

and the flexibility in development of computer code to solve 

these equations. 

In the present study, we have predominantly used Finite 

Element Method (FEM) except for one case in which Finite 

difference method was utilized, as it was particularly suitable 

for that case. The following sections enlighten the Finite 

element method and present its application to solve the above-

mentioned equations. 

The Finite Element Method is a deservingly popular 

method amongst scientific community. This method was 

originally developed to study the mechanical stresses in a 

complex airframe structure popularized by Zienkiewicz and 

Cheung (23) by applying it to continuum mechanics. Since 

then the application of Finite Element Method has been 

exploited to solve the numerous problems in various 

engineering disciplines. The great thing about finite element 

method is its ease with which it can be generalized to myriad 

engineering problems comprised of different materials. 

Another admirable feature of the Finite Element Method 

(FEM) is that it can be applied wide range of geometries 

having irregular boundaries, which is highly difficult to achieve 

with other contemporary methods. FEM can be said to have 

comprised of roughly 5 steps to solve any particular problem. 

The steps can be summarized as  

 Descritizing the domain: This step involves the division of 

whole physical domain into smaller segments known as 

elements, and then identifying the nodes, coordinates of 

each node and ensuring proper connectivity between the 

nodes. 

 Specifying the equation: In this step, the governing 

equation is specified and an equation is written in terms of 

nodal values 

 Development of Global matrix: The equations are 

arranged in a global matrix which takes into account the 

whole domain 

 Solution: The equations are solved to get the desired 

variable at each table in the domain 

 Evaluate the quantities of interest: After solving the 

equations a set of values is obtained for each node, which 

can be further processed to get the quantities of interest.  

There are varieties of elements available in FEM, which 

are distinguished by the presence of number of nodes.  The 

present study is carried out by using a simple 3-noded 

triangular element. 

Let us consider that the variable to be determined in the 

triangular area is ‘ ’. The polynomial function for ‘ ’ can be 

expressed as: 

                  = 1 + 2 x + 3y             (1) 

The variable   has the value  i,  j and  k at the nodal 

position i, j, and k of the element. The x and y coordinates at 

these points are xi, xj, xk and yi, yj and yk respectively. 

Substitution of these nodal values in the equation (1) helps in 

determining the constants 1 , 2 , 3  which are: 

1 = 
1
/2A [(xj yk – xk yj )  i + (xk yi – xi yk)  j + (xi yj – xj 

yi)  k ]  

2 = 
1
/2A [(yj  - yk )  i + (yk – yi )  j + (yi – yj )  k ] 

  

3 = 
1
/2A [(xk  - xj )  i + (xi – xk )  j + (xj – xi )  k ] 

  

where A is area of the triangle given as 
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Substitution of 1, 2, 3 in the equation (1) and 

mathematical arrangement of the terms results into 

  = Ni  i + Nj  j + Nk  k     

In equation (6), Ni, Nj and Nk are the shape function given 

by 
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The constants can be expressed in terms of coordinates as  

ai = xj yk – xk yj 
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ci = xk - xj 

aj = xk yi – xi yk 

bj = yk – yi              

cj = xi – xk 

ak = xi yj – xj yi 

bk = yi - yj       

ck = xj – xi 

The triangular element can be subdivided into three 

triangles with a point in the center of original triangle. 

Defining the new area ratios as 
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It can be shown that 

           L1 = N1      

          2L  = N2      

          3L  = N3      

Good insight into the FEM is given in Segerlind [24], 

Galerkin method is employed to convert the partial differential 
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equations into matrix form for an element. The steps invented 

are as given below. 

Please note that the nodal terms i, j & k are replaced by 1,2 

& 3 respectively in subsequent discussions for simplicity. 

The momentum and energy balance equations are solved 

using the Galerkin finite element method. Continuity equation 

will be used as a constraint due to mass conservation and this 

constraint may be used to obtain the pressure distribution. In 

order to solve equations, we use the finite element method 

where the pressure P is eliminated by a penalty parameter    

and the incompressibility criteria given by equation (2.1) 

which results in
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The continuity equation (2.5) is automatically satisfied for 

large values of .  

Application of Galerkin method to equation (2.6) yields: 
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e
 is the residue. 

Considering the terms individually 
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Thus the whole equation (2.8) can be written in matrix 

form as 
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FEM of Energy Equation 
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Thus the whole equation (2.14) can be written in matrix 

form as 

   
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IV. NUSSELT NUMBER 

 

The ratio of the conductive thermal resistance to the 

convective thermal resistance of the fluid is called Nusselt 

number. This is writeen as Nu = hL/ K. 

 

 

V. RESULTS AND DISCUSSIONS 

 

The numerical solutions are found for different grid 

systems from 21   21 to 101   101. After 41  41 grids, no 

considerable change in the average Nusselt number is 

observed and hence a 41   41 grid is used in this study.  

Numerical study is conducted for different heating 

locations, Grashof numbers and aspect ratios. The flow pattern 

and isotherms for different heating locations, Ar = 2 and Gr = 

10
5
 are displayed in Fig. 1.  The flow is unicellular with 

clockwise rotation. There exist two secondary cells within the 

primary cell since both the locations are at the top of the side 

walls of the cavity, Fig. 1. When the heating location is at top, 

middle or bottom the flow is activated around the active zones 

while the remaining portion of the cavity remains stagnant. It 

is observed in Fig. 1 that a peculiar phenomenon occurs for 
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the bottom thermally active location. The flow is in two cells 

and centers of the cells are located near the thermally active 

parts of the side walls. When compared to other positions the 

heat transfer rate is much less in this to wards conduction at 

the central region and convection near the active locations. As 

the cold wall is moved to the bottom, the isotherms predict 

almost conduction at the middle of the cavity. In this case, the 

circulation rate and velocity are very low compared to all the 

other cases.  

Fig. 2 shows that the middle–middle heating location, 

there is a strong thermal boundary layers are formed at the 

active locations and the existence of convection near the active 

locations is seen from the isotherms for aspect ratios 0.5, 1, 2, 

3 and 5 and Gr = 10
5
. The circulation rate and the heat transfer 

rate are maximum in this case compared to all the other cases. 

A single cell pattern is observed.  

For the case of square cavity, there exist two inner cells 

each at the top left and bottom right corners of the cavity. The 

remaining two corners are less activated but this type of 

behaviour does not exist in the case of rectangular cavities. 

The two inner cells are moved to upper and lower parts of the 

cavity when Ar = 2. This is due to the dominating buoyancy 

force inside the cavity.  

Further increasing the aspect ratio, the two inner cells 

grow in size and strength, while two small recirculating eddies 

occur in the middle of the cavity. Increasing the aspect ratio to 

5 the recirculating zones in the middle of the cavity disappear. 

The isotherms for the middle–middle thermally active 

location, different aspect ratios and Gr = 10
5
 are presented in 

Fig. 3.  

For all the aspect ratios, a thermal boundary layer exists 

along the active zones. Large velocity and temperature 

gradients characterize the region immediately adjacent to the 

thermally active side wall locations while negligible gradients 

(normal to the hot/cold wall location) prevail in the rest of the 

cavity. Such behaviour is indicative of the thermal boundary 

layer structure. Fig. 3 shows the flow pattern for the middle–

bottom heating location, different aspect ratios and Gr = 10
5
. 

 In the case of square cavity, the two inner cells exist in 

the middle left and bottom right active parts of the cavity. On 

increasing the aspect ratio, the two inner cells disappear and 

the major cell is skewed upward along the hot wall and 

downward along the cold wall. Further on increasing the 

aspect ratio, upper part of the cavity remains stagnant while 

the lower part of the cavity is more activated. A secondary cell 

exists within the primary cell in the lower part of the cavity. 

With increase in the aspect ratio of the cavity, the buoyant 

convection flow is increasingly strengthened. The isotherms 

for the middle– bottom thermally active location, for different 

aspect ratios are displayed in Fig. 3. The same behaviour is 

observed as in Fig. 2. Figures 4., and Fig. 5., shows the 

streamlines and isotherms for Grashof numbers top , middle 

and bottom  heating locations for Ar = 3 and for Gr = 10
3
. 

There exists a clockwise rotating cell in the middle portion of 

the cavity.  The fluid in the upper and lower parts of the cavity 

is stagnant.  

When Gr = 10
4
 and Ar = 3, the circulation rate of the eddy 

is increased and the unicellular pattern is enlarged and 

occupies the whole cavity. Further increasing Gr = 10
5 

and Ar 

= 3, there exist a unicellular pattern. The velocity of the fluid 

particle inside the cavity and also the buoyant convection flow 

increases by increasing   the   Grashof number.  

Fig. 7 shows the mid-height velocity profile for different 

aspect ratios and middle–middle heating locations for Gr = 10
5 

and for different aspect ratios. The increase in the vertical 

velocity of the fluid particles at mid-height of the cavity for 

increasing aspect ratio near the active locations is shown.  

The time history of the average Nusselt number for 

different aspect ratios and Gr = 10
5 

at middle–middle heating 

locations are displayed in Fig. 8. Thus the average Nusselt 

number is increased as the aspect ratio increases. Increasing 

the aspect ratio increases the time to reach the steady state 

situation of the solution.  

Average Nusselt number for different aspect ratios, 

different Grashof numbers for different heating locations ( top, 

middle and bottom heating ) is depicted in Fig. 9. The heat 

transfer rate is increased by increasing both the aspect ratio 

and the Grashof number.  

In order to evaluate how the aspect ratio and different 

heating locations affects the heat transfer rate, the average 

Nusselt number is plotted as a function of aspect ratio for 

different thermally active zones in Fig. 9.   

Heat transfer rate is increased on increasing the aspect 

ratio. There is no considerable variation in the average Nusselt 

number for Ar   1 when the heating/cooling locations are 

changed. The heat transfer rate is enhanced when a cooling 

location is at the top of the enclosure. When changing the 

heating location from top to bottom the average Nusselt 

number is increased by increasing the aspect ratio. It is clearly 

seen from Fig. 9. 
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(c) 

Figure 1: Stream functions (Left) for all heating locations, Ar 

= 2 and Gr = 10
5
 and Isotherms (Right) for all heating 

locations, Ar = 2 and Gr = 10
5
 respectively 
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(c) 

Figure 2: Stream functions (Left) for middle–middle heating 

location, aspect ratios 0.5, 1, 2, 3 and 5 and Gr = 10
5
 

Isotherms (Right) for middle–middle heating location, aspect 

ratios 0.5, 1, 2, 3 and 5 and Gr = 10
5
 respectively 
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(c) 

Figure 3: Stream functions (Left) for middle–bottom heating 

location, aspect ratios 0.5, 1, 2, 3 and 5 and Gr = 10
5
 

Isotherms (Right) for middle–bottom heating location, aspect 

ratios 0.5, 1, 2, 3 and 5 and Gr = 10
5
 respectively 
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(c) 

Figure 4: Streamline Contour plots for Gr = 10
3
 and Ar = 3. 

Clockwise and anti-clockwise flows are shown via negative 

and positive signs of stream functions (Left) and Isotherms 

(Right) respectively 
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(c) 

Figure 5: Streamline Contour plots for Gr = 10
4
 and Ar = 3. 

Clockwise and anti-clockwise flows are shown via negative 

and positive signs of stream functions (Left) and Isotherms 

(Right) respectively 

-0
.7

-
0

.6

-0.6

-
0

.6

-0.6

-
0

.5

-0.5
-0

.5

-0
.5

-0.5

-0
.5

-0
.4

-0
.4

-0.4

-0
.4

-
0

.4

-0.4

-0.4

-
0

.3

-
0

.3

-0.3
-0.3

-
0

.3

-0.3

-0.3

-0
.3

-
0

.2

-
0

.2

-0.2 -0.2

-
0

.2

-
0

.2

-0.2-0.2

-0
.2

-
0

.1

-
0

.1

-0.1 -0.1

-0
.1

-
0

.1

-0.1

-0.1-0.1

-
0

.1

0
0

0

0 0 0

0
0

000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.
1

0
.
1

0
.
1

0
.
2

0
.
2

0
.
2

0
.
3

0
.3

0
.
3

0
.
4

0
.4

0
.
4

0
.
5

0
.5

0
.
5

0
.
6

0
.6

0
.
6

0
.
7

0
.
7

0
.
7

0
.
8

0
.
8

0
.
8

0
.
9

0
.
9

0
.
9

1
1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
(a) 

-1
.8

-1
.8

-1
.6 -1.6

-1
.6

-1.6

-
1

.4

-1.4

-1
.4

-
1

.4

-1.4

-1
.4

-
1

.2

-1.2

-1
.2

-
1

.2

-1.2

-1.2

-
1

-1 -1

-1

-
1

-1

-1

-
0

.8

-0.8
-0.8

-0
.8

-
0

.8

-0.8
-0.8

-0
.8

-
0

.6

-0.6 -0.6

-0
.6

-
0

.6

-0.6-0.6

-0
.6

-
0

.6

-
0

.4

-0.4 -0.4

-0
.4

-
0

.4

-0.4-0.4
-0.4

-
0

.4
-
0

.2

-
0

.2

-0.2 -0.2
-0

.2

-
0

.2

-
0

.2

-0.2-0.2

-0
.2

0
0

0

0 0 0

0
0

000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.1

0
.
1

0
.
1

0
.2

0
.2

0
.
2

0.
3

0
.3

0
.
3

0
.4

0.
4

0
.4

0
.5

0.
5

0
.5

0
.6

0.
6

0
.6

0
.7

0
.7

0
.7

0
.
8

0
.8

0
.
8

0
.
9

0
.
9

0
.9

1
1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
(b) 

-
2

.5

-2.5

-
2

.5

-2.5

-2

-2
-2

-2

-2
-2

-
1

.5

-1
.5

-1.5

-1.5

-
1

.5

-1.5
-1.5

-1
.5

-
1

-1 -1

-1

-
1

-1-1

-1

-
1

-
0

.5

-0
.5

-0.5 -0.5

-
0

.5
-
0

.5

-0.5-0.5
-0.5

-
0

.5

0
0

0

0 0 0

0
0

000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.1

0
.
1

0
.
1

0.
2

0
.2

0
.
2

0
.3

0.3

0
.3

0
.
3

0
.4

0.
4

0.
4

0
.4

0
.5

0.
5

0.
5

0
.5

0
.
6

0.
6

0.
6

0
.6

0
.
7

0
.7

0.
7

0
.7

0
.
8

0
.8

0.
8

0
.
9

0
.
9

0
.9

1
1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
(c) 

Figure 6: Streamline Contour plots for Gr = 10
5
 and Ar = 3. 

Clockwise and anti-clockwise flows are shown via negative 

and positive signs of stream functions (Left) and Isotherms 

(Right) respectively 
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Figure 11: Time history of average Nusselt number for 

different, aspect 
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Figure 12: Average Nusselt number for different heating 
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