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I. INTRODUCTION 

 

The study of the motion of a particle at the instant it 

passes the centre of the cylindrical container serves as a model 

of interaction in multi particle system. This class of problems 

is important because it provide some information on wall 

effects. The container used to hold a packing of particles will 

induce a local area of order of the container wall in an 

otherwise random packing, and which will make both the 

micro and macro structural properties near the wall different 

from those far away from the wall. This is known as the wall 

effect and often characterized in terms of porosity for spheres 

packed in cylindrical container. The side wall effect has been 

studied by many researchers for many years. Drag experienced 

by porous cylinder in a viscous fluid at low Reynolds number 

was evaluated by Strechkina[1]. An analytical study of the 

steady incompressible flow past a circular cylinder embedded 

in porous medium based on the Brinkman model has been 

reported by Pop and Cheng [2]. The problem of stokes flow 

through a swarm of circular cylinders with Happel and 

Kuwabara boundary condition was discussed by Deo[3]. Flow 

of a viscous fluid through a porous circular pipe and its 

surrounding porous medium and the flow around nano spheres 

and nano cylinder were studied by Mathews and Hill[4]. Singh 

and gupta[5] had discussed the problem of uniform flow past a 

permeable inhomogeneous circular cylinder by assuming that 

the flow in the porous cylinder is governed by Darcy law. 

Gupta[6] had solved the problem of flow past a porous 

cylinder matched asymptotic expansion as done by Kapulan[7] 

for an impervious circular cylinder. In this paper he evaluates 

the drag force experienced by porous spherical particle and 

wall correction factor. In this paper we deal the creeping 

motion of a porous circular cylinder at the instant it passes the 

center of cylindrical container. The flow inside the porous 

cylindrical particle is governed by Brinkman equation. 

However, the flow inside the cylindrical container is governed 

by Stokes equation. The drag force acting on porous 

cylindrical particle is evaluated. The variation of drag with 

different parameter is graphically presented. 

 

 

II. STATEMENT AND MATHEMATICAL 

FORMULATION OF THE PROBLEM 

 

Here we have considered a porous circular cylindrical 

particle of radius a passing through the centre of a cylindrical 

container of radius b containing an axi-symmetric Stokes flow 

of a viscous incompressible fluid. This is equivalent to the 
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inner particle at rest while the outer cylindrical container 

moves with a constant velocity U in the negative Z direction. 

We assume that the flow within the cylindrical container is 

Stokesian, and for the flow inside the porous circular cylinder 

is governed by Brinkman’s equation. 

GOVERNING EQUATIONS: The governing equations for 

the creeping flow of an incompressible Newtonian fluid, 

which lies in the region outside the porous cylindrical particle  

be governed by Stokes equation [Happel and Brenner [30]] as 

                                            (1)          

Also, we assume that the flow inside the porous 

cylindrical particle is governed by the Brinkman equation 

[Zlatanovski [31]]      

                (2)      

Here 1  is the viscosity of the clear fluid, 2 denotes the 

effective viscosity of porous medium, k being the 

permeability of porous medium. The viscosity coefficients 1  

and 2 are, in general, different. Here, 2,1,, )()( ip iiv  be 

the velocity vector and pressure outside and inside the porous 

cylindrical particle respectively. Equation (2) reduces to the 

Stokes equation for large permeability k , i.e. for small , 

( )2()2(2
2 p v ) however, for low permeability this 

equation resembles with Darcy empirical equation       

( )2()2(
1 )/( pk  v ). 

In addition, the equations of continuity for incompressible 

fluids must be satisfied in both regions: 
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These equations of continuity for axi-symmetric, 

incompressible viscous fluid in cylindrical polar coordinates 

),,( zr   in both regions can be written as  

   ( ) ( )( ) ( ) 0i i

rr v v
r




 
 

 
,                                (4) 

where, 
)(i

rv  and
)(i

v


, i =1, 2 are component of velocities 

in the direction of r  and   , respectively. The stream 

functions  ),()(  ri
 in both regions, satisfying equations of 

continuity (5) may be defined as 










)(
1)(

i

r
v i

r     ;  
r

v
i

i






)(
)( 

 .     (5) 

Let the index in the superscript under bracket of an 

entity
)(i , 2,1i  indicates clear and porous fluid regions, 

respectively. 

Using the following variables  
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)(ip

b

U
p


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                      'r br ,                                           (7) 

and eliminating the pressures from both equations (1) and 

(2) and using (5), we get the   following fourth order partial 

differential equations, respectively as 

                 ,                                       (8) 

                                            (9)                

where, 
222 /   with

2

2 1/   ,  

and 
2  being the dimensionless operator defined by 
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The range of andr in the above equations (9) and 

(10), with in a cylinder is given by: 

         20,0 r .     (11) 

Furthermore, the expressions for tangential and normal 

stresses
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Also, the pressure may be obtained in both regions 

(Happel and Brenner, [8]) by integrating the following 

relations respectively as 
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where, 10 2221   and . 

A suitable stream function solution of the Stokes equation 

(8) can be expressed as 
(1) 3

1 1 1 1( , ) [ / ln ]sinr A r B r C r D r r     
  

(16) 

A suitable stream function solution of the Brinkman 

equation (9) can be expressed as 

      .                      (17) 

Here,  is the modified Bessel’s functions of the 

order one of the first kind.  

 

 

III. SOLUTION OF THE PROBLEM 

 

The mathematically consistent boundary conditions for 

the concerned problem are as follows: On the porous surface:     

(2) (1)
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On the outer cylinder, the condition of impenetrability 

leads to      

  (22)                          

Here, we have taken .  
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DETERMINATION OF ARBITRARY CONSTANTS 

 

As a result of application of the boundary conditions (18) 

– (22), we find that                                    

                              (23) 

(24) 

        (25) 

                                   (26) 

                          (27) 

             (28) 

Solving the above equations ((23)-(28)), we get all the 

constants which are cumbersome.   

 

 

IV. EVALUATION OF DRAG FORCE 

 

Integrating the normal and tangential stresses over the 

porous cylindrical shell of radius a  in a cell, yields the drag 

force experienced per unit length F as given below. 

.            (29) 

On evaluation of stress components from equations (13) 

and (14), one can find that 

     (30) 

                 (31) 

Inserting the values of (30) and (31) in equation (29) and 

integrating, we get 

                                                      (32) 

where the value of constant  is given in Appendix    

      

DRAG FORCE ON A SOLID CYLINDER IN CELL 

MODEL (K0) 

 

When permeability k  vanishes, i.e. permeability 

parameter  , then the porous circular cylinder behaves 

like a solid cylinder of radius b. In this case, we get the value 

of the constant 1D  as 

                                      (33)    

Thus the value of drag force, from the equation (32), 

experienced by the porous circular cylinder in a cell comes out 

as 
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where  ,also, the drag coefficient DC  can 

be written as 
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This result of the drag force agrees with the earlier result 

as reported by Happel. 

  

 

 

 

VELOCITY COMPONENTS, PRESSURE, VORTICITY 

AND STRESS TENSOR  

 

Using the values of  and  from Eqs. 

(16) and (17),in Eq.(5),we have the following expressions for 

the velocity components for the outside and inside region of 

porous cylindrical particle as 

  (36) 

  (37) 

                       (38) 

   (39) 

Again, substituting the values of velocity components 

from (36)-(39) in Equations (14) and (15) 

and then integrating the resulting equations: 

                       (40) 

we obtain, 

,                              (41) 

                                        (42) 

where and are the pressures in the outside and 

inside the porous cylindrical particle, respectively. 

The vorticity  and for outside and inside regions 

of the porous cylindrical particle can be expressed in terms of 

velocity component as 

     (43) 

Therefore, 

,                       (44) 

                                (45) 

Components of the stress tensor for the outside region of 

the porous cylindrical particle is given by Equations (30) and 

(31) and the component of the stress tensor for the inside 

region of the porous cylindrical particle can be obtained by 

using the equations (12) and (13) which comes out as 

,          

        (47) 

  

STREAM LINES PRESENTATION: 
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