Invariant Submanifold Of $\tilde{\psi}(5,3)$ Structure Manifold

Lakhan Singh

Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.), India

Shailendra Kumar Gautam

Eshan College of Engineering, Mathura(UP), India

Abstract: In this paper, we have studied various properties of a $\tilde{\psi}(5,3)$ structure manifold and its invariant submanifold. Under two different assumptions, the nature of induced structure Ψ , has also been discussed.

Keywords: Invariant submanifold, Nijenhuis tensor, projection operators and complementary distributions.

I. INTRODUCTION

Let V^m be a C^{∞} m-dimensional Riemannian manifold imbedded in a C^{∞} n-dimensional Riemannian manifold M^n , where m < n. The imbedding being denoted by

 $f: V^m \longrightarrow M^n$ Let B be the mapping induced by f i.e. B = df

$$df: T(V) \longrightarrow T(M)$$

Let T(V,M) be the set of all vectors tangent to the submanifold f(V). It is well known that

$$B: T(V) \longrightarrow T(V,M)$$

Is an isomorphism. The set of all vectors normal to f(V) forms a vector bundle over f(V), which we shall denote by N(V,M). We call N(V,M) the normal bundle of V^m . The vector bundle induced by f from N(V,M) is denoted by N(V). We denote by $C:N(V) \longrightarrow N(V,M)$ the natural isomorphism and by $\eta_s^r(V)$ the space of all C^∞ tensor fields of type (r, s) associated with N (V). Thus $\zeta_0^0(V) = \eta_0^0(V)$ is the space of all C^∞ functions defined on V^m while an element of

 $\eta_0^1(V)$ is a C^{∞} vector field normal to V^m and an element of $\zeta_0^1(V)$ is a C^{∞} vector field tangential to V^m .

Let \overline{X} and \overline{Y} be vector fields defined along f(V)and \tilde{X}, \tilde{Y} be the local extensions of \overline{X} and \overline{Y} respectively. Then $[\tilde{X}, \tilde{Y}]$ is a vector field tangential to M^n and its restriction $[\tilde{X}, \tilde{Y}]/f(V)$ to f(V) is determined independently of the choice of these local extension \tilde{X} and \tilde{Y} . Thus $[\overline{X}, \overline{Y}]$ is defined as

(1.1)
$$[X, Y] = [X, Y]/f(V)$$

Since B is an isomorphism

(1.2)
$$\begin{bmatrix} BX, BY \end{bmatrix} = B \begin{bmatrix} X, Y \end{bmatrix} \text{ for all } X, Y \in \zeta_0^1(V)$$

Let *G* be the Riemannain metric tensor of M^n , we define *g* and g^* on V^m and N(V) respectively as

(1.3)
$$g(X_1, X_2) = G(BX_1, BX_2) f$$
, and
(1.4) $g^*(N_1, N_2) = \tilde{G}(CN_1, CN_2)$
For all $X_1, X_2 \in \zeta_0^1(V)$ and $N_1, N_2 \in \eta_0^1(V)$

It can be verified that g and g^* are the induced metrics on V^m and N(V) respectively. Let $\tilde{\nabla}$ be the Riemannian connection determined by \tilde{G} in M^n , then $\tilde{\nabla}$ induces a connection ∇ in f(V) defined by

(1.5)
$$\nabla_{\bar{X}}\overline{Y} = \tilde{\nabla}_{\tilde{X}}\tilde{Y}/f(V)$$

where \overline{X} and \overline{Y} are arbitrary C^{∞} vector fields defined along f(V) and tangential to f(V).

Let us suppose that M^n is a $C^{\infty} \tilde{\psi}(5,3)$ structure manifold with structure tensor $\tilde{\psi}$ of type (1,1) satisfying

$$(1.6) \qquad \tilde{\psi}^5 + \tilde{\psi}^3 = 0$$

Let L and \tilde{M} be the complementary distributions corresponding to the projection operators

(1.7)
$$\tilde{l} = \tilde{\psi}^4$$
, $\tilde{m} = I - \tilde{\psi}^4$

where I denotes the identity operator. From (1.6) and (1.7), we have

(1.8) (a)
$$\tilde{l} + \tilde{m} = I$$
 (b) $\tilde{l}^2 = \tilde{l}$
(c) $\tilde{m}^2 = \tilde{m}$ (d) $\tilde{l} \quad \tilde{m} = \tilde{m} \quad \tilde{l} = 0$

Let D_l and D_m be the subspaces inherited by complementary projection operators l and m respectively. We define

$$D_{l} = \left\{ X \in T_{p}(V) : lX = X, mX = 0 \right\}$$
$$D_{m} = \left\{ X \in T_{p}(V) : mX = X, lX = 0 \right\}$$
$$Thus T_{p}(V) = D_{l} + D_{m}$$
$$Also \qquad Ker \ l = \left\{ X : lX = 0 \right\} = D_{m}$$
$$Ker \ m = \left\{ X : mX = 0 \right\} = D_{l}$$
at each point p of $f(V)$.

II. INVARIANT SUBMANIFOLD OF $\tilde{\psi}(5,3)$ STRUCTURE MANIFOLD

We call V^m to be invariant submanifold of M^n if the tangent space $T^p(f(V))$ of f(V) is invariant by the linear mapping $\tilde{\psi}$ at each point p of f(V). Thus (2.1) $\tilde{\psi}BX = B\psi X$, for all $X \in \zeta_0^1(V)$, and ψ

being a (1,1) tensor field in V^m .

THEOREM (2.1): Let \tilde{N} and N be the Nijenhuis tensors determined by $\tilde{\psi}$ and ψ in M^n and V^m respectively, then

(2.2) $\tilde{N}(BX, BY) = BN(X,Y)$, for all $X, Y \in \zeta_0^1(V)$ *PROOF:* We have, by using (1.2) and (2.1)

III. DISTRIBUTION \tilde{M} NEVER BEING TANGENTIAL TO f(V)

THEOREM (3.1) if the distribution \tilde{M} is never tangential to f(V), then

(3.1)
$$\tilde{m}(BX) = 0$$
 for all $X \in \zeta_0^1(V)$

and the induced structure ψ on V^m satisfies

(3.2)
$$\psi^4 =$$

PROOF : if possible $\tilde{m}(BX) \neq 0$. From (2.1) We get

(3.3)
$$\tilde{\psi}^{4}BX = B\psi^{4}X$$
; from (1.7) and (3.3)
 $\tilde{m}(BX) = (I - \tilde{\psi}^{4})BX$
 $= BX - B\psi^{4}X$
(3.4) $\tilde{m}(BX) = B(X - \psi^{4}X)$

This relation shows that $\tilde{m}(BX)$ is tangential to f(V) which contradicts the hypothesis. Thus $\tilde{m}(BX) = 0$. Using this result in (3.4) and remembering that *B* is an isomorphism, We get

 $(3.5) \quad \psi^4 = I,$

THEOREM (3.2) Let \tilde{M} be never tangential to f(V), then

$$(3.6) \qquad \tilde{N}_{\tilde{m}}(BX, BY) = 0$$

PROOF: We have

(3.7) $\tilde{N}_{\tilde{m}}(BX, BY) = [\tilde{m}BX, \tilde{m}BY] + \tilde{m}^2[BX, BY] - \tilde{m}[\tilde{m}BX, BY] - \tilde{m}[BX, \tilde{m}BY]$ Using (1.2), (1.8) (c) and (3.1), we get (3.6).

THEOREM (3.3) Let \tilde{M} be never tangential to f(V),

then

$$(3.8) \qquad \tilde{N}_{\tilde{i}}(BX, BY) = 0$$

PROOF: We have

(3.9) $\tilde{N}_{\tilde{l}}(BX, BY) = [\tilde{l} BX, \tilde{l} BY] + \tilde{l}^2 [BX, BY] - \tilde{l} [\tilde{l} BX, BY] - \tilde{l} [BX, \tilde{l} BY]$ Using (1.2), (1.8) (a), (b) and (3.1) in (3.9); we get (3.8) *THEOREN* (3.4) Let \tilde{M} be never tangential to f(V).

Define

$$(3.10) \tilde{H}\left(\tilde{X},\tilde{Y}\right) = \tilde{N}\left(\tilde{X},\tilde{Y}\right) - \tilde{N}\left(\tilde{m}\tilde{X},\tilde{Y}\right) - \tilde{N}\left(\tilde{X},\tilde{m}\tilde{Y}\right)$$

$$+\tilde{N}\left(\tilde{m}\tilde{X},\tilde{m}\tilde{Y}\right)$$

For all $\tilde{X}, \tilde{Y} \in \zeta_0^1(M)$, then (3.11) $\tilde{H}(BX, BY) = BN(X, Y)$

PROOF: Using $\tilde{X} = BX$, $\tilde{Y} = BY$ and (2.2), (3.1) in (3.10) We get (3.11).

IV. DISTRIBUTION \tilde{M} ALWAYS BEING TANGENTIAL TO f(V)

THEOREM (4.1) Let \tilde{M} be always tangential to f(V), then

(4.1) (a) $\tilde{m}(BX) = Bm X$ (b) $\tilde{l}(BX) = Bl X$ *PROOF:* from (3.4), We get (4.1) (a). Also

$$(4.2) \quad l = \psi^4$$

$$lX = \psi^4 X$$

- (4.3) $BlX = B\psi^4 X$ Using (2.1) in (4.3)
- (4.4) $BlX = \tilde{\psi}^4 BX = \tilde{l}(BX),$ which is (4.1) (b).

THEOREM (4.2) Let \tilde{M} be always tangential to f(V), then *l* and *m* satisfy

(4.5) (a) l + m = l (b) lm = ml = 0 (c) $l^2 = l$ (d) $m^2 = m$. *PROOF:* Using (1.8) and (4.1) We get the results. *THEOREM* (4.3) If \tilde{M} is always tangential to f(V).

then

(4.6) $\psi^5 + \psi^3 = 0$

$$(4.7) \qquad \tilde{\psi}^5 BX = B \psi^5 X$$

Using (1.6) in (4.7)

$$-\tilde{\psi}^{3} BX = B \psi^{5} X$$
$$-B\psi^{3} X = B \psi^{5} X$$
Or $\psi^{5} + \psi^{3} = 0$ which is (4.6)

THEOREM (4.4): If \tilde{M} Is always tangential to f(V) then as in (3.10)

(4.8)
$$\tilde{H}(BX,BY) = BH(X,Y)$$

PROOF: from (3.10) we get

$$(4.9)\tilde{H}(BX,BY) = \tilde{N}(BX,BY) - \tilde{N}(\tilde{m}BX,BY) - \tilde{N}(BX,\tilde{m}BY) + \tilde{N}(\tilde{m}BX,\tilde{m}BY)$$

Using (4.1) (a) and (2.2) in (4.9) we get (4.8).

REFERENCES

- A Bejancu: On semi-invariant submanifolds of an almost contact metric manifold. An Stiint Univ., "A.I.I. Cuza" Lasi Sec. Ia Mat. (Supplement) 1981, 17-21.
- [2] B. Prasad: Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) 21 (1988), 21-26.
- [3] F. Careres: Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc. 91 (1982), 99-106.
- [4] Endo Hiroshi: On invariant submanifolds of connect metric manifolds, Indian J. Pure Appl. Math 22 (6) (June-1991), 449-453.
- [5] H.B. Pandey & A. Kumar: Anti-invariant submanifold of almost para contact manifold. Prog. of Maths Volume 21(1): 1987.
- [6] K. Yano: On a structure defined by a tensor field f of the type (1,1) satisfying f3+f=0. Tensor N.S., 14 (1963), 99-109.
- [7] R. Nivas & S. Yadav : On CR-structures and HSU structure satisfying , Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).