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I. INTRODUCTION 

 

The study of elastic foundations in poroelastic solids has 

wide applications in the fields of Engineering and Geophysics. 

Even in human body, a number of muscoskeletal models of 

knee joint and skin employ different forms of elastic wrinkler 

foundations. Plates resting on elastic foundation are frequently 

used structural elements in modelling of engineering problems 

such as concrete roads, mat foundations of buildings and 

reinforced concrete pavements of air port runways. Pasternak 

[1] studied a new method of analysis of an elastic foundation 

by means of two foundation constants. In the said paper the 

two parameter model is frequently adopted to described the 

mechanical behaviour of foundations. The well known 

Wrinkler model can be considered as a special case that 

ignores the shear deformation of the foundation.  Hasini 

Baferani et al [2] investigated accurate solution for free 

vibration analysis of functionally graded thick rectangular 

plates resting on elastic foundation. In the said paper, free 

vibration analysis of moderately thick rectangular FG plates 

on elastic foundation with various combinations of simply 

supported and clamped boundary conditions are studied. 

Winkler model is considered to describe the reaction of elastic 

foundation on the plate. Governing equations of motion are 

derived based on the Mindlin plate theory. A semi-analytical 

solution is presented for the governing equations using the 

extended Kantorovich method together with infinite power 

series solution. Effects of elastic foundation, boundary 

conditions, material, and geometrical parameters on natural 

frequencies of the FG plates are investigated. Matsunsga [3] 

studied vibration and stability of thick plates on elastic 

foundations. Natural frequencies and buckling stresses of a 

thick isotropic plate on two-parameter elastic foundations are 

analyzed by taking into account the effect of shear 

deformation, thickness change, and rotatory inertia. Using the 

method of power series expansion of the displacement 

components, a set of fundamental dynamic equations of a two-

dimensional, higher-order theory for thick rectangular plates 

subjected to in plane stress is derived through Hamilton 

principle. Hosseini Hashemi et al [4] investigated vibration 

analysis of rectangular Mindlin plates on elastic foundations 

and vertically in contact with stationary fluid by Ritz method. 

In the said paper, free vibration analysis of vertical rectangular 

Mindlin plates resting on Pasternak elastic foundation and 

fully or partially in contact with fluid on one side is 

investigated for different combinations of boundary 

conditions. In order to analyze the interaction of the Mindlin 

plate with the elastic foundation and fluid system, three 

displacement components of the plate are expressed in the Ritz 

method by adopting a set of static Timoshenko beam functions 

satisfying geometric boundary conditions in a Cartesian co-

ordinate system. The method of separation of variables and the 

method of Fourier series expansion is used to model fluid and 

to obtain the exact expression of the motion of fluid in the 

form of integral equations. Exact solutions for rectangular 

Mindlin plates under in plane loads resting on Pasternak 

elastic foundation is studied by Akhavan et al. [5]. In the said 

paper, the effect of foundation stiffness parameters and 

loading factors on the natural frequencies of the plate, 

constrained by different combinations of classical boundary 

conditions, is presented for various values of aspect ratios and 

thickness to length ratios. Tajeddini et al [6] studied three 

Abstract: This paper deals with the flexural vibrations of poroelastic plates resting on the elastic foundation are 
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dimensional free vibrations of variable thickness thick circular 

and annular isotropic and functionally graded plates on 

Pasternak foundation. In the said paper, the kinematic and the 

potential energy of the plate–foundation system are formulated 

and the polynomial-Ritz method is used to solve the 

eigenvalue problem. The fundamental solution of Mindlin 

plates resting on an elastic foundation in Laplace domain and 

its applications is investigated by Wen [7]. In the said paper, 

fundamental solution is applied to a shear deformable plate 

resting on the elastic foundation under either a static or a 

dynamic load. The complete expressions for internal point 

kernels, i.e. fundamental solutions by the boundary element 

method, for the Mindlin plate theory are derived in the 

Laplace transform domain. Zhou et al [8] studied three 

dimensional vibration analysis of rectangular thick plates on 

Pasternak foundations. In the said paper, the Ritz method is 

used to derive the eigenvalue equation of the rectangular plate 

by augmenting the strain energy of the plate with the potential 

energy of the elastic foundation.  Free vibration of simply 

supported rectangular plates on Pasternak foundation: An 

exact and three dimensional solutions are studied by 

Dehghany and Farajpour [9]. In the said paper, the navier 

equations of motion are replaced by three decoupled equations 

in terms of displacement components. The equations are 

solved in semi-inverse method, and solution is formed for a 

double fourier sine series. Vibration characteristics of fluid 

filled cylindrical shells based on elastic foundations is studied 

by Abdul Ghafar Shah et al [10]. In the said paper, frequencies 

are strongly affected when a cylindrical shell is attached with 

elastic foundation.   

Employing the Biot’s theory [11], Deflection of 

poroelastic plates is studied by Taber [12]. In the said paper, 

governing equations are derived on linear consolidation theory 

and reduce to a single fourth order integro-partial differential 

equation is used to solved for the transverse displacement. The 

results are presented for a simply supported rectangular plate 

with a time dependent surface pressure. Edge waves in 

poroelastic plate under plane stress conditions are studied by 

Malla Reddy and Tajuddin [13]. In the said paper, the 

governing equations of plane stress problems in poroelastic 

solids are formulated. Three dimensional vibration analysis of 

an infinite poroelastic plate immersed in an inviscid elastic 

plate is studied by Shah and Tajuddin [14]. In the said paper, 

the frequency equation is obtained for each pervious and 

impervious surface of poroelastic plate in contact with an 

inviscid elastic fluid and poroelastic plate in vaccum as a 

particular case. Pradhan et al [15] investigated shear waves in 

a fluid saturated elastic plate. In the said paper, the frequency 

spectrum for SH in the plate is studied and the propagation is 

damped due to the two phase character of the porous medium. 

Vertical vibrations of elastic foundation resting on saturated 

half space is studied by Guo-Cai wang et al [16]. In the said 

paper, the foundation is subjected to time-harmonic vertical 

loadings and then the transform solutions for the governing 

equations of the saturated media are dervied. On flexural 

vibrations of poroelastic circular cylindrical shells immersed 

in an acoustic medium is studied by Shah and Tajuddin [17]. 

However to the best of author’s knowledge flexural vibrations 

of poroelastic plates resting on the elastic foundation are not 

yet investigated. Therefore in this paper an attempt is made to 

investigate the same in the framework of Biot’s theory. The 

pertinent governing equations in the case of flexural vibrations 

are derived. Phase velocity is computed as a function of shear 

foundation. Phase velocity is computed for three types of 

poroelastic materials and then discussed. It is observed that 

phase velocity is greater for material-1 than that of material-2 

and material-3. It is also clear that as the shear foundation 

increases phase velocity decreases. 

This paper is organized as follows.  In section 2, 

governing equations and solutions of the problem are given. 

Numerical results are described in section 3. Finally, 

conclusions are given in section 4.  

 

 

II. GOVERNING EQUATIONS AND SOLUTION OF THE 

PROBLEM 

 

The dynamic equations in cartesian coordinate system in 

the absence of body forces [11] are as follows 
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In eq. (1), 221211 ,,   are the mass coefficients, 

),,( wvu  and ),,( WVU  are the displacements of solid and 

fluid.  s  is the fluid pressure, ij  are the stress components 

are given by 
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In eq. (2), ije ’s are strain components, RQNA ,,,  are 

poroelastic constants, e and  are dilatations of solid and 

fluid.  The strain ije are related the displacements are as 

follows  
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In eq. (3) zzyyxx  ,,  are the normal stresses, 

xyyzxz  ,, are the shear stresses, zzyyxx eee ,, are the 

normal strains, xzyzxy eee ,, are the shear strains. Substitution 

of eq. (2) and eq. (3) in eq. (1) and introducing the Wrinkler 

and Pasternak foundations )( 2wGKw   in the 

z direction, the equations of motion for the flexural 

problem are as follows 
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Now one assume the solution to the eq. (4) in the 

following form 
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In all the above 654321 ,,,,, CCCCCC are arbitrary 

constants, j  is the complex unity and )3,2,1( iki is the 

wavenumber in the
thi direction such that the wavenumber 

2

3
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1 kkkk  . Substituting eq. (5) in the eq. (4), the 

equation of motion in terms of displacements are as follows. 
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III. NUMERICAL RESULTS 

 

For the numerical results, we consider the wave 

propagation in the z -direction. In this case 021  kk  and 

wrinkler foundation 0K . Then the equations of motion 

reduces to  
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For a non-trivial solution, the determinant of above 

coefficient matrix is zero. This leads to the frequency 

equation: 
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The frequency equation is investigated by introducing the 

non-dimensionalised quantities givenbelow: 
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(9) 

In eq. (9), c  is phase velocity, k  is wavenumber and m  

is non-dimensional phase velocity, 0c and 0V are the reference 

velocities. Employing the non-dimensional quantities in the 

frequency equation, we obtain implicit relation between non-

dimensional phase velocity )(m , shear foundation and non-

dimensional wavenumber. For numerical process, three 

poroelastic solids are considered and then discussed. Of three 

poroelastic solids, two are sandstone saturated with water and 

kerosene, respectively [18, 19], and the third one is bony 

element. The physical parameter values of first two materials 

pertaining to the eq. (9) are given in the Table 1. Further, the 

values of bone poroelastic parameters  RQNA ,,,  and its 
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mass coefficients ij are computed following the paper [20]. 

The values of Young’s modulus and Poisson ratio are taken to 

be 
6103  and 28.0 , respectively as suggested in the paper 

[20]. Phase velocity is computed using the bisection method 

implemented in MATLAB, and the results are depicted in the 

figure-1.  Figure.1 shows the plots of non dimensional phase 

velocity against the shear foundation for fixed wavenumber. 

From this figure it is clear that material-1 values are greater 

than that of material-2 this discrepancy is due to fluid present 

in the materials. The values of bone are much less than that of 

material-1 and material-2. Moreover, for fixed shear 

foundation, non-dimensional phase velocity value is computed 

against wavenumber, and the values found to be same for all 

the values of wavenumber. For example, when the shear 

foundation value is 2, the non-dimensional phase velocity is 

1.5547 for all the values of the wavenumber in the range 1-

100. From these results, we conclude that phase velocity is 

independent of wavenumber.  
Material 

parameters 1a  
2a  

3a  4a  
1d  

2d  
3d  z~  

 

Material-1 

 

0.843 

 

0.65 

 

0.28 

 

0.234 

 

0.901 

 

-0.001 

 

0.101 

 

3.851 

 

Material-2 

 

0.96 

 

0.006 

 

0.028 

 

0.412 

 

0.887 

 

0 

 

0.123 

 

2.129 

Table 1 

 
Figure 1: Variation of non-dimensional phase velocity with 

shear foundation 

 

 

IV. CONCLUSION 

 

Employing Biot’s theory, flexural vibrations of 

poroelastic plates resting on elastic foundation are 

investigated. Non-dimensional phase velocity against shear 

foundation is computed for three types of poroelastic solids. 

From the results, it is clear that material-1 values are greater 

than that of material-2 and also as the shear foundation 

increases, phase velocity decreases in all the cases. When the 

shear foundation is fixed, it is observed that phase velocity is 

independent of wavenumber. This kind of analysis can be 

made for any poroelastic solid cylinder if the values of 

parameters are available. 
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