The Split Decompositions Of Finite Separable Metacyclic 2-Group

D. Samaila
M. Pius Pur

Department of Mathematics, Adamawa State University, Mubi

Abstract: Given a finite separable metacyclic 2-group G, it is always possible to express G as a semidirect product of a cyclic group with another cyclic group. In this paper, we implement the use of Group Application Package (GAP) Software to determine the split decompositions of a finite separable metacyclic 2-group up to isomorphism, where the dihedral group D_{16} of order 2^4 and its presentations was derived and shown to be separable. The finite groups were generated and expressed as the semidirect product of cyclic subgroups.

Keywords: Complement, Metacyclic group, Dihedral group; Separable, Semidirect product, Split decompositions

I. INTRODUCTION

A subgroup N of a group G is complemented in G if there exists another subgroup H of G such that $G = NH$ and whenever $x \in N$ and $x \in H$, then $x = 1$, the identity element of G. i.e. $N \cap H = \{1\}$. If in addition, $N \triangleleft G$, then G is said to split over N and is written as $G = [N]H$. In this case, we say that G is the semidirect product of its subgroups N and H. If further, $G = [N]H = [N_1]H_1$, with $N \cong N_1$ and $H \cong H_1$, then the two split decompositions $[N]H$ and $[N_1]H_1$ are said to be isomorphic. A group is said to be separable if it splits over a nontrivial proper normal subgroup and inseparable otherwise.

Any metacyclic p-group can be presented by the relation $G = \langle x, y \mid x^{p^i} = 1, y^{p^j} = x^{t}, x^y = x^i \rangle$. If G is separable, then by the same result, we can make t to be 0 so that $G = \langle x, y \mid x^{p^i} = 1, y^{p^j} = x^{i} \rangle$. In this case, $G = \langle \langle x \rangle \rangle$ and in our result, we have shown that the separable metacyclic p-groups with p odd have split decompositions isomorphic to G. However, this is not the case for all metacyclic 2-groups, particularly for Dihedral groups D_n of order $2n$. For instance, consider the dihedral group $D_4 = \langle \alpha, \beta \mid \alpha^2 = \beta^2 = 1, \alpha \beta = \beta \alpha \rangle$ of order 8. While $D_4 = \langle \langle \alpha \rangle \rangle \langle \beta \rangle$, it has a non-isomorphic decomposition, where $D_4 = \langle \langle \alpha \rangle \rangle \langle \beta \rangle \langle \alpha \beta \rangle$, with $\langle \alpha \beta \rangle$ isomorphic to the Klein 4-group. For general presentation and more information, see [2].

This paper is a review of the work of Kirtland, [10]. Our aim is to study the finite separable metacyclic 2-group, the necessary and sufficient conditions under which a separable metacyclic 2-group has all its split decompositions isomorphic as discussed by Kirtland and then implement the use of GAP to determine its splits decompositions. The concept of metacyclic 2-groups and metacyclic p-groups in general, have been extensively studied by many authors. For more information and results, see the work of Brandle and Verardi [3], Lie dhal [4], King [1], Beuerle [5], Hempel [6], and Sire [7]. In particular, separable metacyclic groups have been studied by Sim [8] and Jackson [9]. However, the simple condition for which a separable metacyclic 2-group has all its split decompositions isomorphic has not been directly addressed by these authors.

We used standard notations and for a p-group G, the subgroup Ω_i of G is given by $\Omega_i(G) = \langle g \mid g^{p^i} = 1 \rangle$. The center of a group G is denoted by $Z(G)$ and $\Phi(G)$ will denote its Frattini subgroup. Our research is limited to finite groups.

We shall see from the following theorem that if G is a metacyclic p-group for p an odd prime, then all its split decompositions are isomorphic.
THEOREM 1.1: Given a separable metacyclic p-group G for p an odd prime, then all its split decompositions are isomorphic [10].

Proof. By [1], we have $G = \langle x, y \mid x^{p^n} = y^{p^n} = 1, x^y = x^r \rangle$ and so, $G = \langle [x,y] \rangle$. Let $G = [N]H$ be another split decomposition for G. If G is Abelian, then $G = \langle x \rangle \times \langle y \rangle = N \times H$ and without any loss of generality, we get by [10], that $N \cong \langle x \rangle$ and $H \cong \langle y \rangle$.

Assume G is not Abelian. Then by [12], we have $|\Omega_2(G)| = p^2$ and since both $\Omega_2(N)$ and $\Omega_2(H)$ are nontrivial and both contained in $\Omega_2(G)$, it follows that $|\Omega_2(N)| = |\Omega_2(H)| = p$. But $p > 2$. Hence N and H are cyclic by [5] and by [7], $N \cong \langle x \rangle$ and $H \cong \langle y \rangle$.*

II. SEPARABLE METACYCLIC 2-GROUPS; $M = 1$

In this section, split decompositions of metacyclic 2-groups G of the form $G = \langle x, y \mid x^{2^n} = y^2 = 1, x^y = x^r \rangle$ are investigated. Kirtland [10] in his paper also investigated the split decompositions of metacyclic 2-group. The novelty in this paper is to show how to investigate the split decompositions of a finite metacyclic 2-group using GAP Software and to determine if the split decompositions are isomorphic. If G is abelian, then obviously, all its split decompositions are isomorphic by [11]. Otherwise, if $n = 2$, then G is the dihedral group D_8, and all of its split decompositions are isomorphic [10]. The case $n \geq 3$ shall be considered in the next section where G is non-Abelian.

We shall now follow the following theorem as stated by Kirtland [10], and then implement it in GAP by generating a Dihedral group D_{16} of order 32 and its presentations.

THEOREM 2.1: Let G be any non-Abelian metacyclic 2-group with presentation $G = \langle x, y \mid x^{2^n} = y^2 = 1, x^y = x^r \rangle$ with $n \geq 3$. Then the split decompositions of G are isomorphic if and only if $r = 2^{n-1} + 1$.

Proof: Assume that all split decompositions of G are isomorphic. Now consider the normal subgroup $N = \langle x^2, y \rangle$ of G. Since N is complemented in G, we have $G = \langle [x^2, y] \rangle \langle x^2, y \rangle \cong \langle x, y \rangle$ and $\langle x^2, y \rangle$ is Abelian. Thus $x = (x^2)^y = (x^2)^r = x^2$ and $2r = 2$ (mod 2n). Hence, $r = 1$ (mod 2$^{n-1}$) or $r = 2^{n-1} + 1$.

Conversely, suppose $r = 2^{n-1} + 1$ and that $G = [N]H$. Then obviously, $x = (x^2)^y = (x^2)^r = x^{2^r} = x^{2^2}$ and $\langle x \rangle = Z(G)$. Furthermore, $N \cap Z(G) \neq \{1\}$. This implies that $\langle x^{2^{n-1}} \rangle \subseteq N$ and $x^{2^{n-1}} \in H$. If in addition, $[x, y] = x^{-1}y^{-1}x^{-1}r^{-1} = x^{-1}y^{-1}x^{-1}r^{-1}$, then $G' = \langle x^{2^{n-1}} \rangle$.

Next, let $G' = G/(x^{2^{n-1}}) \cong Z_{2^{n-1}} \times Z_2$. Then consequently, $G = N/(x^{2^{n-1}}) \times H/(x^{2^{n-1}}) / (x^{2^{n-1}}) = \overline{N} \times \overline{H}$ with $\overline{N} \cong \{1\}$ and $\overline{H} \cong H$. Hence, we have by [11], that $\overline{N} \cong Z_{2^{n-1}}$ and $\overline{H} \cong H \cong Z_2$ or $\overline{N} \cong Z_2$ and $\overline{H} \cong H \cong Z_{2^{n-1}}$.

Finally, consider the case $\overline{N} \cong Z_2$ and $\overline{H} \cong H \cong Z_{2^{n-1}}$. Then we have $|N| = 4$ and $|H|/\phi(|N|) \leq |\text{Aut}(N)| = 2$. But if H is cyclic, then we have $C_p(N) \leq H \cap Z(G) = \{1\}$ and $|H| \leq 2$. Thus $|G| = 8$ and $n = 2$. But this contradicts the fact that $n \geq 3$. Consequently, $\overline{N} \cong Z_{2^{n-1}}$ and $\overline{H} \cong H \cong Z_2 \cong \langle b \rangle$. Hence, N is a maximal subgroup of G.

Now since $G/(x^2) = Z_2 \times Z_2$ and $\Phi(G) = \langle x^2 \rangle$, the only possible maximal subgroups of G are $\langle x \rangle$, $\langle y \rangle$, and $\langle x^2, y \rangle$. But $(xy)^2 = xx^y = x^{r+1} = x^{2^{n-1}+2}$ and $|x^{2^{n-1}+2} = 2^{n-1}$.

Hence, $|xy| = 2^n$ and $\langle x^2, y \rangle \cong \langle xy \rangle \cong \langle x \rangle$. Now consider the subgroup $\langle x^2 \rangle$. Since $Z(G) = \langle x^2 \rangle$, $|\Omega_2(G)| = 4$ and $\Omega_2(G) = \langle x^{2^{n-1}} \rangle$, we have $\Omega_2(G) \cong \langle x^2, y \rangle$. Furthermore, $\Omega_1(H) \subseteq \Omega_1(G) \subseteq \langle x^2, y \rangle$. Therefore if $N = \langle x^2 \rangle$, then $N \cap H \neq \{1\}$, a contradiction. Hence, $N \cong \langle x \rangle$, $H \cong \langle y \rangle$ and all split decompositions are isomorphic.*

REMARK 2.2: Consider the dihedral group D_{16}, of order 2^4 with the presentation $D_{16} = \langle \alpha, \beta \mid \alpha^{2^4} = \beta^2 = 1, \alpha^\beta = \alpha^r \rangle$.

We obtained the following results from GAP.

gap> G:= DihedralGroup(IsPermGroup,32);
gap> Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)]);
gap> r:=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);
gap> N:= Subgroup(G, [r]);
gap> f:= (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10);;
gap> H:= Subgroup(G, [f]);
gap> Size(N); Size(H);
gap> Size(D); 16
2
gap> IsCyclic(N); true
gap> IsCyclic(H); true
gap> IsNormal(G, N); true
gap> IsNormal(G, H); false
gap> D:= DirectProduct(N, H);
gap> Size(D); 32
gap> Center(G);
gap> Group([(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]); gap> s:=(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16);
gap> Z:= Subgroup(G, [s]);
gap> Size(Z); 2
gap> IsNormal(G, Z); true
gap> IsCyclic(Z);
true
gap> quit

Here, the subgroup N of order 16 consists of all the rotations in D_{16} as follows:

If we let $\alpha = \langle 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 \rangle$, then N is given by the following presentation:

$$N = \{ \alpha^n : 1 \leq n \leq 16, \text{ where } \alpha^{16} = \alpha \}.$$

The cyclic subgroup N of index 2 in D_{16} is normal as shown above. It is also true by Lagrange’s theorem since $|D_{16}| = |N| = 2$. Then the only nontrivial elements $\{ \alpha^n \}$ of G. Hence, $N = \{ \alpha^n \}$, and α is odd. Then G must all have its split decompositions isomorphic. We therefore implement the result using GAP Software by constructing some finite groups whose subgroups are cyclic.

THEOREM 3.1: If G is a separable metacyclic 2-group of type $G = \langle x, y \mid x^{2m} = y^2 = 1, x^r = x' \rangle$ with $m \geq 2$, then all its split decompositions are isomorphic [10].

PROOF. If the group G is Abelian, then the result follows directly from [11]. Now, supposed G is not Abelian. Consequently, we shall have $r \geq 3$ and $n \geq 2$. We now consider three cases.

CASE 1: Let $a \in G$ where $a = x^n y^{2m-1} \alpha$ with α odd and $o(a) \neq 2$.

Now suppose $o(a) \neq 2$, then $a^2 = (x^n y^{2m-1})^2 = x^{2n} y^{2m-2} = 1$. This implies that $a + a \alpha = 0$ (mod 2^m) or $\alpha (1 + r^{2m-1}) = k 2^n$ where k is a positive integer. The fact that α is odd and $a \alpha^k$ implies that αk. Thus $1 + r^{2m-1} = (k / \alpha) 2^n$ or $r^{2m-1} = (k / \alpha) 2^n - 1$. Hence, $x^{2m-1} = x^{2m-1} = x^{k / (k / \alpha) 2^n - 1} = x^{-1}$. Moreover, since $m \geq 2$, we have $x^{2m-1} = x^s$ where $1 \leq s \leq 2^m - 1$ and s is odd. This implies that $s^2 = -1$ (mod 2^m), a contradiction. Hence, $o(a) \neq 2$.

CASE 2: Let $\Omega_1(G) = \{ 1, x^{2m-1}, y^{2m-1}, x^{2m-1} y^{2m-1} \}$.

Now if $a = x^n y^m$ is a nontrivial element of G such that $o(a) \neq 2$ and $a = 0$ or $b = 0$, then $a = y^{2m-1}$ or $a = x^{2m-1}$ respectively. If $a \neq 0$ and $b \neq 0$, then $\beta = 2^m$ and $a = x^n y^{2m-1}$.

Suppose $n = 2$. Then by case 1, $\alpha = 2 = 2^n$. But if $n \geq 3$ and since $\langle x \rangle$ acts on $\langle y \rangle$, there is a homomorphism $\Phi_i : \langle x \rangle \mapsto \text{Aut}(\langle x \rangle)$. Suppose that $\ker(\Phi_i) \neq 1$. Then $y^{2m-1} = \ker(\Phi_i)$ and x and y^{2m-1} commute. As a result, $1 = (x^n y^{2m-1})^2 = x^{2m} y^{2m} = x^{2m}$. This implies that $a = 2^n$ and $a = x^n y^{2m-1}$.

Next, suppose $\ker(\Phi_i) = 1$. Denote $\text{Aut}(\langle x \rangle)$ by $\{ \phi_1, \phi_2, ..., \phi_{2^n-1} \}$, where $\phi_i : x \mapsto x^i$, for $i = 1, 2, ..., 2^n - 1$. By [13], we get $\text{Aut}(\langle x \rangle) \cong L + K$, where L is cyclic of order 2^{n-1} and generated by ϕ_2, and K is cyclic of order 2 generated by $\phi_{2^{n-1}}$. Then the only nontrivial elements of $\text{Aut}(\langle x \rangle)$ of order 2 are $\phi_{2^{n-1} + 1}, \phi_{2^{n-1} - 1}$, and $\phi_{2^{n-1}}$ and since $\langle y^{2m-1} \rangle = 2$, it follows that $\phi(y^{2m-1}) = \phi_{2^{n-1} + 1} \phi_{2^{n-1} - 1}$ or $\phi_{2^{n-1} - 1}$. Again if $m \geq 2$, then $\phi(y^{2m-2}) = \phi_{j}$ where $\phi(y^{2m-2}) = (\phi(y^{2m-2}))^2 = \phi_{j}^2$. Thus $j^2 = 2^{n-1} + 1$ (mod 2^m), $2^{n-1} - 1$ (mod 2^m), or $2^{n-1} - 1$ (mod 2^m). But since $j^2 \neq -1$
Finally, given that \(\alpha^2 = 1\), then \((x^{\alpha} y^{x^{-1}})^2 = x^{\alpha^2} y^{x^{-1+1}} = x^{\alpha} y^{x^{-1+2}} = 1\) and since \(x^{2^n-1} = 1\), it follows that \(\alpha = 2^{n-1}\). Hence, \(\Omega_r(G) = \{1, x, x^2, y, x^2 y, x y^2, x y y^2\}\).

CASE 3: All split decompositions of \(G\) are isomorphic.

Supposed that \(G\) is given by the presentation \(G(n,m,r) = \langle x, y \mid x^{2^n-1} = 1, x^m = y^r, x^r = x^x \rangle\), and that \(G = [N]H\). Then \(G(n,m,r) / \langle x^{2^n-1} \rangle \cong G(n-1,m,r)\) and if \(n \geq 2\), then the result is true by induction on \(n\).

Again, since \([x, y] = x^{-1} y x^{-1} y^{-1}\), it implies that \(G^\prime = \langle x^{2^n-1} \rangle \leq \langle x \rangle\). Now let \(z = x^{2^n-1} \in \Omega_r(G^\prime) \cap Z(G)\). If \(z \notin N\), then \([G, N] \leq G^\prime / N \leq \langle x^{2^n-1} \rangle \cap N = \{1\} \). Thus \(N \leq Z(G)\) and so \(G = N \times H\). But this yields \([\Omega_r(G)] = 4\). Thus, we have \([\Omega_r(N)] = [\Omega_r(H)] = 2\). Consequently, \(N\) and \(H\) each have only one subgroup of order 2. But by \([12]\), \(N\) and \(H\) are either cyclic or a generalized quaternion group. In either case, both \(N\) and \(H\) are inseparable and thus by \([11]\), \(N \cong \langle x \rangle\) or \(H \cong \langle y \rangle\), or \(N \cong \langle y \rangle\) and \(H \cong \langle x \rangle\). In either case, \(H\) is cyclic, implying that \(G\) is abelian, a contradiction.

Hence, \(\langle z \rangle \leq N\) and \([\langle y \rangle / \langle z \rangle]\langle y \rangle \equiv G(n-1, m, r) \equiv G(z) \equiv [N / \langle z \rangle][H / \langle z \rangle] \langle z \rangle\). As a result, \(N / \langle z \rangle \cong \langle x \rangle / \langle z \rangle\) and \(H \cong \langle y \rangle / \langle z \rangle\) or \(N / \langle z \rangle \cong \langle y \rangle / \langle z \rangle\) and \(H \cong \langle x \rangle / \langle z \rangle\). In either case, \(H\) is cyclic and \(N\) is abelian. Also if \(N / \langle z \rangle \cong \langle y \rangle / \langle z \rangle\), then \(N\) has order 2 and is of exponent at least 2\(^{n-1}\). Thus \(N\) is isomorphic to \(Z_2^2\) or \(Z_{2^2} \times Z_2\). Finally, if \(N \cong Z_{2^{n-1}} \times Z_2\), then we have \([\Omega_r(N)] = 4\) and \([\Omega_r(H)] \geq 8\). This is a contradiction. Thus, \(N\) is cyclic and if \(N / \langle z \rangle \cong \langle y \rangle / \langle z \rangle\), then a similar argument yields that \(N\) must also be cyclic. Hence, both \(N\) and \(H\) are cyclic and by \([1]\), \(N \cong \langle x \rangle\) and \(H \cong \langle y \rangle\). *
function(x) ... end

gap> N:= Subgroup(G, [f(a)]);
Group([(1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12),
(1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16),
(1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16),
(1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12),
(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16),
(1,11,5,9,3,13,7)(2,12,6,14,10,8,16,4),
(1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8),
(1,15,13,11,9,7,5,3)(2,16,14,12,10,8,6,4)]
gap> Elements(N);
[(), (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16),
(1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16),
(1,7,13,3,9,15,5,11)(2,8,14,4,10,16,6,12),
(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16),
(1,11,5,9,3,13,7)(2,12,6,14,10,8,16,4),
(1,13,9,5)(2,14,10,6)(3,15,11,7)(4,16,12,8),
(1,15,13,11,9,7,5,3)(2,16,14,12,10,8,6,4)]
gap> Size(N);
8
gap> IsNormal(G, N);
true
gap> f:= x^5;
function(x) ... end
gap> K:= Subgroup(G, [f(a)]);
Group([(1,6,11,16,5,10,15,4,9,14,3,8,13,2,7,12)]
gap> Size(K);
16
gap> b:= (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16);
gap> M:= Subgroup(G, [b]);
Group([(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]
gap> Elements(M);
[(), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]
gap> Size(M);
2
gap> Size(G) = Size(M)*Size(N);
true

The subgroup \(N \) of \(G \) generated by the function \(f(x) = x^5 \) for an element \(x \in G \) is a normal subgroup while the function \(f(x) = x^3 \) generated the group \(K \cong G \). Hence, \(N \) is complemented in \(G \).

IV. CONCLUSION

In this paper, we have successfully shown that if \(G \) is a finite separable metacyclic 2-group with presentation \(G = \langle x, y \mid x^m = y^{2n} = 1, x^y = x^r \rangle, \ m \geq 1, \ n \geq 3 \), then all split decompositions of \(G \) are either isomorphic (if \(G \) is Abelian), or \(G \) is the Dihedral group of order \(2n \). We therefore conclude that every finite group with the given presentation can be expressed as a semidirect product of a cyclic group with another cyclic group.

REFERENCES