

Page 265 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

Secure And Efficient Of Cloud Storage With Data De-Duplication

Geetha.G

Ms. Thresphine

Prist University Puducherry Campus, Deemed University, Pondicherry, India

I. INTRODUCTION

Data In a cloud storage environment is usually stored in

the space offered by third-party companies. Instead of being

provided by a single host, the storage space is integrated and

distributed through centralized management. Generally

speaking, the commonly seen storage protocols are NAS and

SAN. Nevertheless, due to the great number of users and

devices in the cloud network, the managers often cannot

effectively manage the efficiency of various storage nodes. As

a result, the complexity of controlling the hardware and the

network traffic is increased and the performance of the cloud

network is decreased [2]–[4].

Cloud computing services can be classified as either com-

puting or storage. As far as data storage is concerned, al-

though numerous schemes have been presented to improve file

chunking and data compression, the waste of resources caused

by revisions or changes is often overlooked. For instance, a

file that is reuploaded to the server may seriously affect the

network bandwidth as well as the server workload, and also

degrade efficiency. In addition, the cloud network covers a

great scope and domain and the data written on storage

devices by different users might be similar or identical. In

addition, because of user habits and available resources, most

users access similar data, operate the same functions, or repeat

similar behaviors. Consequently, the system manager can no

longer guarantee the optimal status of each storage node in the

cloud system. With the enlargement of the network, data

integration bottleneck and waste of resources may occur as the

system processes duplicate and redundant data, despite the

flexibility and rapidity of the cloud storage system [5], [21].

This study uses the index name server (INS) to process

cloud storage functions, including file compression, chunk

matching, data de-duplication, real-time feedback control, IP

information, and busy level index monitoring. Therefore, our

proposed INS can manage and optimize the storage nodes

according to the client-side transmission conditions so that

every storage node can maintain its optimal status and provide

suitable resources to clients. Moreover, to balance the load in

the system, we use INS to dynamically monitor IP information

and busy level index to avoid network congestion or long

wait-ing times during transmissions. The simulation results

prove that the performance enhancement of the data

transmission can reach up to 20%–50%, which not only

Abstract: File distribution and storage in a cloud storage environment is usually handled by storage device providers
or physical storage devices rented from third parties. Files can be integrated into useful resources that users are then able
to access via centralized management and virtualization. Nevertheless, when the number of files continues to increase, the

condition of every storage node cannot be guaranteed by the manager. High volumes of files will result in wasted
hardware resources, increased control complexity of the data center, and a less efficient cloud storage system. Therefore,
in order to reduce workloads due to duplicate files, we propose the index name servers (INS) to manage not only file
storage, data de-duplication, optimized node selection, and server load balancing, but also file compression, chunk

matching, real-time feedback control, IP information, and busy level index monitoring. To manage and optimize the
storage nodes based on the client-side transmission status by our proposed INS, all nodes must elicit optimal performance
and offer suitable resources to clients. In this way, not only can the performance of the storage system be improved, but
the files can also be reasonably distributed, decreasing the workload of the storage nodes.

Index Terms: Cloud storage, de-duplication, hash code, load balancing.

Page 266 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

improves the performance of the cloud storage system, but

also distributes the files to reduce the load on the storage

nodes [9].

The rest of this paper is organized as follows. Section II

introduces related works and some background information.

Section III presents our proposed INS. Section IV illus-trates

the cloud-based file chunking and management scheme.

Section V describes real-time feedback controls and the load-

balancing backup mechanism. A performance simulation and

analysis is provided in Section VI. We offer our conclusions in

Section VII.

II. BACKGROUND AND RELATED WORKS

In addition to the basic background techniques, such as

run-length encoding (RLE), dictionary coding, calculation for

the digital fingerprinting of data chunks, distributed hash table

(DHT), and bloom filter, there have been several

investigations into load balancing in cloud computing systems.

A. RUN-LENGTH ENCODING (RLE)

RLE is a data compression method that converts repeated

characters into a single character for the length of the run.

Notably, the RLE technique is often used for compressing

black and white images into strings of black and white pixels.

Because the length of the run does not distribute equiprobably,

a statistical method is usually adopted for encoding, i.e.,

Huffman coding [13].

B. DICTIONARY CODING

Dictionary coding is another kind of data compression

algorithm that encodes data by compressing repeated char-

acters and strings. Using some codes to substitute for these

characters and strings, we can compress a document because

of the correlation of the symbols. A dictionary is just a

synopsis of the strings and codes. Practical dictionary cod-ing

algorithms aim to encode data dynamically and choose a

simple notation to reduce redundant characters. Dictio-nary

coding algorithms can be divided into two types. The first,

which includes LZ77 and Lempel–Ziv–Storer–Szymanski

(LZSS), compares the characters; these check whether the

characters have appeared previously and then replace the

characters by strings that have occurred earlier in the text. The

second type includes LZ78 and Lempel–Ziv–Welch (LZW),

and uses an index instead of a point to represent the input

strings.

C. CALCULATION FOR DIGITAL FINGERPRINT OF

DATA CHUNKS

Through hash algorithms, hash functions can generate an

exclusive fixed-sized digital fingerprint for each data chunk.

In order to transform the variable-length data into fixed-length

data, hash functions scatter and remix the data through

mathematical functions to produce a fixed-sized value shorter

than the raw data. This calculated hash value, the fingerprint

or the signature of the raw data, is usually expressed by strings

of random characters and numbers [6], [19].

A digital fingerprint is the essential feature of a data

chunk. The optimal state is such that each data chunk has its

unique fingerprint, and different chunks have different

fingerprints. As long as the data with the same primary

structures have the same hash values, we can say that data

with the same hash values must have the same original data,

and that data with different hash values must have different

original input data. Nevertheless, the input of a hash function

does not thoroughly correspond with the output. Supposing

two hash values are the same, this simply implies that the

original inputs might be the same. But, different data inputs

with the same hash values indicate that different data chunks

might generate the same fingerprints. We call this situation

hash collision. Compared with secure hash algorithms (SHA),

the MD5 hash function presents a lower possibility of hash

collisions making it a good candidate for operations, such as

fingerprint calculation and recognition.

D. DISTRIBUTED HASH TABLE (DHT)

As one of the most commonly used data retrieval methods

in the distributed computing system, the DHT aims to

efficiently distribute data to different nodes in the system to

guarantee that the message reaches the peer with a specific

given key value. Using DHTs, we can develop more complex

distributed network architectures, such as distributed file

systems, peer-to-peer file sharing, and web caching. Instead of

being managed by the central node, this kind of service allows

different nodes to take charge of parts of the data to construct

all the information in the DHT network. Moreover, a DHT

node does not maintain and possess all the information in the

network, but stores only its own data and those of its

neighboring nodes. This greatly reduces hardware and

bandwidth consumption. Essentially, DHTs highlight the

following features [7].

 Decentralization: there is no central coordination mech-

anism in the system.

 Scalability: the system can maintain efficiency even the

number of nodes becomes increasingly larger.

 Fault tolerance: the system can be reliable (to a certain

extent) even when the number of nodes keeps changing.

To ensure the distribution, querying efficiency, and

accuracy of data, most DHTs use consistent hashing; this

alters only the key/value of the neighboring nodes when the

number of nodes changes, but nodes outside of the region will

be unaffected. Compared to traditional hashing tables that

have to remap the key/value when any change in the key/value

occurs, consistent hashing can avoid the enormous change of

network information when the number of nodes changes. To

remap the key/value, the data in one of the DHT nodes might

be moved to another node, which would waste bandwidth

resources. Therefore, to efficiently support large numbers of

nodes joining or leaving, the reconfiguration must be reduced

as much as possible.

E. BLOOM FILTER

Structurally, the bloom filter is composed of a long binary

vector and a series of random mapping functions. The bloom

Page 267 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

filter is presented to test whether an element is included in the

set. Generally speaking, to test whether an element is a

member of a set or not, collecting all the elements for further

comparison is the most common method, e.g., linked lists and

tree structures. However, with the increase of the elements in

the set, more storage space will be needed and the retrieval

speed will be slowed down. Due to the presentation of hash

functions, the bloom filter can map an element to a point in the

bit array via a hash function, compare whether the point in the

array is equal to 1, and determine whether the element exists

in the set. In addition, to improve the accuracy, more than one

hash function will be adopted to increase different mapping

points.

F. LOAD BALANCING IN CLOUD COMPUTING

SYSTEMS

In order to improve the efficiency and maintain the load

balancing of cloud systems, most research has aimed at

utilizing different scheduling algorithms for better resource

utilization and performance enhancement. However, different

scheduling mechanisms have different features and suit

different states [22].

Figure 1: Hierarchical INS architecture
In [8], the opportunistic load balancing (OLB) algorithm

keeps each node busy. Thus, OLB does not consider the

current workload of each node, but distributes the unprocessed

tasks randomly to available nodes. Although OLB is easy and

direct, this scheduling algorithm does not consider the

expected task execution time and therefore cannot achieve

good execution time in make span. Although the minimum

completion time (MCT) algorithm gathers statistics to

determine the node with the MCT, some tasks still cannot be

scheduled to attain the minimum execution time (MET). The

MET algorithm, on the other hand, allots the unprocessed

tasks to the node with the MET, but this may cause severe

load imbalance and does not suit heterogeneous network

systems. Based on the MCT, the min–min scheduling [10]

algorithm considers both the MCT and the MET, and assigns

the tasks to the node with the MCT.

Load balancing in the cloud-computing environment now

has become a significant issue for the public. Taking place due

to load imbalance, Gmail crashes in 2009 frustrated users

around the world several times. Notably, in WAN architecture,

some problems occur easily. For example, the demander has to

wait for a long time or control the traffic when the net-work

resources are insufficient. Consequently, to achieve load-

balancing success, numerous schemes have been presented to

reach the maximum throughput.

The above-mentioned load-balancing schemes can be di-

vided into several types. Virtual servers [11], [12] present an

integrated heterogeneous environment in which virtual nodes

are classified into idle nodes and high-performance nodes to

deal with different loading conditions. With the attempt to

attain load balancing, [14] proposed monitoring environmental

performance for regional resource integration and different

workload allocation to the nodes. In [15] and [17], virtual IDs

symbolize the performance of nodes. Different IDs accept

different load demands and establish different processing

times to figure out the idle servers. Furthermore, [18]

classified the subnodes according to their performance

together with dy-namic load status monitoring and report load

balancing. While facing different load demands, [17] adjusted

the hierarchical relationships to balance the load by integrating

the light-loaded subnodes or separating the heavy-loaded

subnodes.

Figure 2: INS control diagram

III. INDEX NAME SERVER (INS)

As an index server resembling domain name system

(DNS), the INS uses a complex P2P-like structure to manage

the cloud data [8]. Although similar to DNS in architecture

and function, the INS principally handles the one-to-many

matches between the storage nodes’ IP addresses and hash

codes. Generally speaking, three main functions of INS

include:

 switching the fingerprints to their corresponding storage

nodes;

 confirming and balancing the load of the storage nodes;

 fulfilling user requirements for transmission as possible.

Each INS has its own specific database in the domain that

stores the fingerprints and their corresponding storage nodes

to optimize the file transmissions. Nevertheless, if we use few

INSs to monitor the file system in a WAN cloud network

environment, a large portion of the workload will be allocated

to the INSs. Thus, according to the current DNS structure, we

propose to separate the INSs based on their domains and

Page 268 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

loading capacity, and use the hierarchical management

structure to mitigate the burden of the INSs.

A. INS ARCHITECTURE

Based on the database, the INSs adopt the stack structure

of DNS, manage the storage nodes in their domain, and

process users’ file-access requirements. Although the INSs are

similar to DNS in structure and functions, the INSs mainly

query and control the data between fingerprints and storage

nodes, and coordinate the transmissions by the feedback

control between storage nodes and clients [1], [10], [16]. The

hierarchical INS architecture is shown in Fig. 1.

As displayed in Fig. 2, the INSs can be regarded as the

central managers of the nodes and have server–client relation-

ships [11] with one another in a hierarchical architecture to

record the fingerprints and the storage nodes of all data

chunks.

Figure 3: INS transmission flowchart

Instead of taking down the information of chunk

fragments, the INSs record only the locations of the

fingerprints and manage the storage nodes [12]. Every storage

node offers its condition and data for INSs to record and users

demand the INSs for correlative information during the

transmissions. When a novel INS is built up, this INS will

choose the storage node with the maximum throughput in its

domain as the backup node. Because the INSs focus on

computing and transmitting data, we do not concentrate on the

storage space, but on the efficiency of the databases and the

throughput of data transmission [20].

B. INS QUERYING PROCESS

Every domain-based INS has databases of fingerprints

and storage nodes. The database of fingerprints records the

finger-prints of different files and their corresponding storage

nodes. When a user looks for specific fingerprints, the INS

queries and confirms if the file already exists in the storage

node within the domain before taking the next step. While the

clients want to access data, they can use the fingerprints

obtained as the index and query the INS of the upper layer,

which searches for the best access node based on the content

in the database in case the inefficiency of the access node or

data loss. The INS transmission flowchart is shown in Fig. 3.

Different requirements will lead to different query results.

If the file that the client wants to access does not exist in the

storage nodes in the local domain, the INS queries the INS of

the upper layer. With the help of the Bloom Filter, the INS can

find out the domain of the INS with that file chunk and also

the accurate storage node through the destination INS for

transmission.

Figure 4: INS flowchart

Because we consider the workload of the INSs in different

layers, the INSs in this article are divided into several layers

and have the server–client relationships with one another in a

hierarchical architecture, that is, the INS of the upper layer

provides service to the INS of the lower layer only. The

burden of each INS thus can be distributed efficiently.

C. DE-DUPLICATION

De-duplication is a technique for eliminating duplicate

copies of data through a de-duplication scanning process,

which improves the system performance and decreases the

bandwidth occupied by data transmission. This technique

divides a file into chunks and calculates a unique 128-bit hash

code of each chunk by MD5, i.e., the only signature of the

chunk.

Because of its uniqueness, every fingerprint is regarded as

the identification and fingerprint of a data chunk. After check-

ing a requested fingerprint, the INSs will confirm whether the

file chunk of the same fingerprint exists in the storage space.

If not, the system continues the following uploading procedure

and assigns tasks to the storage node. Fig. 4 displays the INS

flowchart.

Therefore, in hash algorithms, hash functions can convert

the variable length data into a unique fixed-sized digital

fingerprint. In other words, the significant feature of hash

Page 269 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

functions is to map the keys to the same value and the values

calculated by hash functions are thus called hash values, the

signature or fingerprint of the raw data. Hash values are

usually expressed by strings of random characters and

numbers.

Current de-duplication-related techniques and research

have all aimed at deleting duplicate data at the server side, but

none has been proposed to discuss data de-duplication and

redundant data elimination at the client side. When a file is

sent to the cloud storage device, no matter modified or not, the

file must be divided into chunks and compressed before

sending out, which results in the waste of the processing time

at the client side.

IV. CLOUD STORAGE FILE CHUNKING AND

COMPRESSION

Structurally, the INS architecture consists of INSs, IPs,

and clients, in which the INSs are responsible for controlling

the whole network and handling the upload, download, and

storage of data.

 Synchronization: The nodes that store IPs keep reporting

related information to the INSs. This includes the stor-

age space, the memory space, the network bandwidth,

the current array number, and the surplus hardware

resources. Through the information, the INSs can find

the best storage nodes for clients to store data.

 Match and lookup: Before uploading files, the clients

first send the INSs a table, which records the fingerprints

of the file chunks. According to the fingerprints, the

INSs can match and lookup the fingerprints already

stored in the INSs.

 Assignment: Without determining the same fingerprints,

the INSs will arrange specific IP addresses for the clients

to upload files. Matching the fingerprints can accelerate

data matching and delete duplicate data.

 Transmission: The clients transmit the files to the storage

nodes assigned by the INSs and the storage nodes will

report the resource spent on the task (such as CPU

capacity, memory space, bandwidth, and storage space)

back to the INSs for regulation and record.

A. CHUNK

The chunking method in this paper divides a file into

fixed-sized chunks and assigns numbers to each chunk

according to the data match. Before the file chunking, the

chunks are defined as (C): C = C1, C2, C3,, Cn. After

partitioning a new file, we give new serial numbers to the

chunks. To restore the chunks to a complete file, all we need

to do is to arrange the chunks according to the serial numbers

and decompress the chunks to get the original file.

We propose to assign numbers to the chunks so that after

the file is downloaded from the server and modified by the

user, our method can compare the differences between the

original chunks and the modified ones. As shown in Fig. 5, the

modified chunks are defined as (CC) CC = CC1, CC2, CC3,

. . . ,CCn. Once any differences between the original

chunks and the modified chunks are found, we redeploy and

reupload the modified chunks. The chunk size after user

modification is unfixed.

Therefore, client-side and INS-side chunk matching are

different.

 INS-Side Chunk Matching: After the file is compressed

and chunked by the client, a unique 128-bit hash value

generated by MD5 is sent to the INSs for server-side

chunk matching. Once determining the duplicate chunks,

the INSs inform the client to send the nonduplicate

chunks to the IPs designated by the INSs. Thus, the INS-

side chunk matching is based on the uniqueness of MD5.

 Client-Side Chunk Matching: After the client down-loads

the chunks from the server and restores the file, the

chunks might be different from the original chunks due to

user modification or alteration. As shown in Fig. 5, the

client-side chunk matching compares the chunks of the

original file and the modified chunks.

B. CLIENT-SIDE CHUNK COMPARISON

This paper defines the chunk sizes based on user update

ratios. Once the file is altered or modified by the user, our

proposed method will compare the original file with the

altered version. Supposing the altered data chunks differ from

the original ones, such as C3 versus CC3 and C5 versus CC5 as

shown in Fig. 5, our method compresses, partitions, and

uploads the file again. Equation (1) gives the definition for

chunk comparison; when the contrast value between the

original chunk and the altered one is not equal to 1, the chunk

will be compressed and partitioned again. The number of the

repartitioned chunks, K, is defined in (2). Equation (3) defines

the total number of the original chunks, TC or TCC, while (4)

defines RC, the rate of change.

 When the contrast value between the original chunk and

the altered one is not equal to 1, the chunk will be

compressed and partitioned again

Cn

_= 1 (1)

CCn

 The number of the repartitioned chunks (K)

Cn

Cn

CC
CC

K = if

> or < 1, K = K + 1 (2)

 n=1 CCn

 The total number of the original chunks (TCC)

 TCC = CCn (3)

 The rate of change (RC)

RC =

 K

× 100% (4)

 TCC

We use (1) to (3) to calculate the rate of change. Equation

(1) determines whether the original chunks and the modified

ones are the same. If the contrast value is larger or smaller

than 1, it means that the chunks have been modified. Next, (2)

is used to calculate the number of the repartitioned chunks, K.

Then, K, the number of the repartitioned chunks, divided by

TCC, the number of the original chunks, equals the rate of

change.

Page 270 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

Figure 6: INS controlling process

V. REAL-TIME FEEDBACK CONTROL AND

BALANCING BACKUP MECHANISM

A. PERFORMANCE PARAMETERS OF STORAGE

NODES AND MULTIPOINT

TRANSMISSION

The performance parameters of storage nodes greatly in-

fluence the whole network. To bring the storage nodes into

full play based on their efficiency, we define a parameter

metric for files, which refers to the number of files that a

storage node can actually process. When a storage node starts

for the first time, the node examines its own performance.

However, every storage node has different hardware (such as

CPU, RAM, and hard disk), and the actual efficiency of the

storage node cannot be determined according only to hardware

specifications. Therefore, modifying the measuring method is

necessary. We propose to test the maximum write/read speed

before the system achieves 90% of the load and to get the

access efficiency of the storage node based on its available

maximum bandwidth. Since the chunk size is fixed, our

proposed scheme is able to figure out the performance metric

of all storage nodes in the INS environment

 Bc

Bs = (5)
 [N

download
+ (N

upload
−F

u
)]

×

(1

−

F
d

)

In (5), Bs is the bandwidth provided by the storage node, n

is the number of storage nodes for the following

transmissions, Ndownload and Nupload are the number of files that

the client will download and upload, respectively, and Bc is the

bandwidth that the client will use for transmission. Moreover,

Fd is the network delay time after several transmissions. To

include Fd, we can ensure that the INSs assign the most

suitable storage node with the most appropriate bandwidth to

the client so that the utilization efficiency of the storage nodes

can be en-hanced. Fu signifies the number of duplicate files

determined by the INS databases. The duplicate file chunks

will not be reuploaded again to the storage node.

Moreover, the intervals between packet transmissions

usu-ally result in extra network delay. When transmitting file

chunks, the storage node might face unnecessary waiting time

due to some protocol packets (e.g., ACK packets). Since the

current network bandwidth reaches a certain level, only the

waiting time caused by 10-byte protocol packets is re-garded

as the network delay. Consequently, as for the trans-mission

completed every second, the delay time caused by protocol

packets is

Dt =
Bc

(6)

Ps

Owing to the waiting time, the delay probability per

second is

P
delay

=
 1

(7)

 Dt

According to this probability, we can figure out the rela-

tionship between the stream number and the delay probability

by
 1

k

Pdelay =

(8)

Dt

After regulating the positions of the data, we get

Bc

× Delay

D

K = log

(9)

Ps

where K is the stream number, Bc, the client-side

bandwidth, Ps, the packet size, and Dr , the incidence of delay.

With this equation, we can control the incidence of delay

caused by the waiting time and limit the stream number to

attain the optimal performance of the storage node.

B. FEEDBACK CONTROL SYSTEM PROCEDURES

Because of external interferences, such as network delay,

the transmission value in fact is not equal to the bandwidth

that users can use. Thus, while choosing the storage node, the

INSs might overestimate users’ capacity and result in waste of

efficiency. So, we propose to improve this problem by

feedback control. Regarded as an automatic control system,

the INS keeps receiving the feedback of the former

transmissions and adjusting the parameters to reach the

optimal performance of storage nodes. Fig. 6 displays the INS

controlling process:

 R(k): The initial expected value;

 F(k): The output feedback;

 M(k): The modified feedback;

 Fs(k): The modified internal function of the storage node;

 D(k): The external interference factor (random variable);

 X(k): The result within the storage node;

 Y (k): The actual result;

 KINS: The optimal node determined by the INS based on

the feedback.

At the initial stage, the INS uses the client-side

parameters to compute the bandwidth that the client will use

for the storage node as R(k). Next, the system adjusts the

parameters according to the results of the former transmission,

M(k), with the aim of adjusting the client-side parameters and

allocating the suitable storage node to the client.

Figure 7: Local backup mechanism.

Page 271 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

C. LOCAL AND REMOTE BACKUP

According to the relativity between time and distance, the

INSs not only can classify the paths and find the best path of a

given weight in an ad hoc network, but also can analyze the

transmission efficiency among the storage nodes and select the

shortest path. It is worth noting that we include several

transmission parameters in the environment and take down the

records in the INSs in an attempt to achieve the flexible

system performance and the optimal resource management.

The content of the INS record is defined in

[D(i)][L(i)][Q(i)][B(i)][R(i)] (10)

 D(i): The hash code of a data chunk, also the identifi-

cation and fingerprint of the chunk, which is expressed by

a 128-bit string.

 L(i): The location of the node that stores the data chunk.

This column stores the IPs and geographical information

of all storage nodes in accordance with the index. When

users search for the needed hash code, this column lists all

corresponding IPs.

 Q(i): The transmission quality of all paths from the INS to

the destination storage node. We can figure out the

transmission quality of all paths according to the

parameters returned by both terminals. To transmit a

standard-sized packet (1/4 MB), the INS can ascertain the

transmission quality of all nodes and other INSs in the

domain.

 B(i): The present busy level of the storage node is a

parameter based on the current loading status of the

hardware. While confirming the existence of other nodes,

the target node first broadcasts its own busy level for the

INSs to compile. The INSs then make a judgment on

whether or not to connect.

 R(i): The IPs and completion time of visitors who connect

to the storage node successfully through the INSs. To

offer visitor records, this parameter allows the INSs to

cancel data backup, control network resources, and

manage backup data efficiently.

Fig. 7 shows that when the target node reveals B(i) =

B(b), the INS first analyzes its neighboring nodes to find the

suitable node for temporary backup; the neighboring node

with B(i) = B(c) will be suitable for data backup. Compared

with our

Figure 8: Remote backup mechanism

proposed method, other backup mechanisms only search for

the neighboring nodes with better performance, without con-

sidering whether this node is idle or sufficient for data backup.

After the new temporary backup is generated, the INS that

was initially requested to appoint nodes will rearrange the

deployment. Once B(i), the busy level of the requested node

increases, the INS will alter the connection target of L(i), and

lead the later demanders to the nodes for temporary backup. If

the demand increases, the backup continues. If B(i) is reduced

to B(c), the INS changes L(i) and leads the demanders back to

the original requested node. In order to save the network

resources, the data for temporary backup will be de-

duplicated.

Fig. 8 shows that when the target node, A, reveals B(i) =

B(b), the requested INS first analyzes the source of the

demands. If 60% of the demands come from remote sites and

Q(i)is too high, it means that the path from the node to the

demander is too far or not good. At this time, the requested

INS uses R(i) to calculate the suitable area for temporary

backup and analyzes Q(i) and B(i) to choose the optimal node

as B for remote backup. Without wasting too many resources

in crossing domains, this method can limit the distance

between the requested end and the backup node. Once the new

temporary backup is created, the requested INS immediately

leads the demanders to the new nodes for tem-porary backup.

For the time being, the INS changes L(i) and leads the

demanders X and Y to their adjacent requested nodes. The data

for temporary backup also will be de-duplicated to save

network resources. The remote backup is created after B(i)

turns to B(b) for two reasons: 1) directly creating the remote

backup after the request will waste resources; and 2) we create

the most efficient remote backup only when enough remote

requests are made.

VI. PERFORMANCE SIMULATION AND ANALYSIS

Here, we present the simulation of the file chunks and

INS parameters, in which the transmission efficiency and load

balancing of the INSs is further analyzed.

Table 1: Simulation Parameters For Different Chunk Sizes

Figure 9: User update ratio (10%) vs. ratio of the actual

update chunk

Page 272 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

Figure 10: User update ratio (50%) versus ratio of the actual

update chunk

A. UPDATING DATA CHUNKS

The purpose of this section is to determine the best chunk

size for cloud file systems based on the update chunk ratio

after users modify or alter the data. The simulation is run

based on the parameters listed in Table I and the simulation

results are given in Figs. 9–11. The simulation results show

that when the user update ratio is 10%, 50%, and 90%, and the

chunk size is under 1/2 MB, the update chunk ratio is about

1:1, and appears to be stable between 1/2 and 1/8 MB. Thus,

the update chunk size above 1/2 MB will be insufficient. If the

chunk size is 1/8 MB, the number of chunks will double that

of 1/4 MB, which aggravates the burden on the system.

Therefore, based on the chunk size of P2P, we choose 1/4 MB

as the chunk size in the simulation [15].

Figure 11: User update ratio (90%) versus ratio of the actual

update chunk

Parameter Content
Performance metric of storage node 200–500 (fps)

Space of storage node 1–10 (TB)

Bandwidth of storage node 10–100 (Mb/s)

Client-side write request 1–5 (fps)

Client-side read request 1–5 (fps)

Client-side bandwidth 2–10 (Mb/s)

Extra transmission delay 5–100 (ms)

Number of clients 1–2700+

Table 2: Parameters for INS Performance Simulation

B. INS Performance Simulation
An INS system includes the client, the storage node, and

the INS. Table II lists the related simulation parameters.

Fig. 12 shows the average delay time of different trans-

mission schemes in the same environment. After figuring out

which storage nodes elicit better performance and bandwidth,

the hybrid scheme selects the suitable nodes for transmission

based on their current loading states. Although this scheme

can ensure that the transmission load is first handled by the

nodes with better performance, these storage nodes have

heavier loads, comparatively. As opposed to other schemes

that select the nodes based on various orientations, the random

scheme allocates the load to all nodes equally without

considering the capacity of every node. On the other hand, our

proposed INS considers both the load and performance of the

storage nodes. While choosing the nodes, the INS scheme

selects the nodes with the best bandwidth and performance

allowing the most suitable storage nodes for client-side

transmissions to be chosen.

The effects of different schemes to the system’s average

loading rate are given in Fig. 13, in which the loading rate of

the INS at 100% is regarded as the benchmark. The figure

shows that the INS scheme is able to distribute the load to all

storage nodes efficiently by taking the bandwidth,

performance, and load balancing into account. On the other

hand, because the load is distributed to some of the nodes

only, the load of the hybrid scheme appears to be much higher.

The hybrid scheme is a significant issue in the current

literature. Notably, the random scheme was originally pro-

posed to distribute the load equally. However, because

different storage nodes have different bandwidths and present

different performances, the random scheme cannot attain a fair

load balancing.

Figure 12: Average delay time

Figure 13: Average loading rate

Data duplication rate (%) Maximum number of clients
0 2600

10 2800

20 2900

30 3000

Page 273 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

40 3300

50 3700
60 3700
70 4000

80 4300

90 5200

Table 3: Data Duplication Rate and the Corresponding

Maximum Number of Clients

After analyzing the above scenarios, we further add the

mechanism of data duplication identification and management

to decrease the load of the INS and storage nodes allowing the

clients to have more resources available for performance

enhancement. Table III lists different data duplication rates

and the corresponding maximum number of clients when the

loading rate of the INS scheme reaches 100%.
Fig. 14 displays the average loading rate of the INS

scheme under different data duplication rates, and a 0% data

duplication rate is taken as the maximal value for further

comparison. We found that with the increase of duplication

rate, the loading rate under the same node number can be

approximately reduced by 50%. This result supports the notion

that data de-duplication mechanism can efficiently reduce the

load of the system.

Figure 14: Average loading rate under different data de-

duplication rates

Figure 15: Average delay time at 40% de-duplication rate

Figure 16: Average delay time at 70% de-duplication rate

B. LOAD BALANCING AND BACKUP EXAMINATION

OF INS

This experiment compares three methods for selecting

backup nodes: random selection, performance-based selection

(INS Basic), and our proposed nonbusy and high-efficient

selection (INS Adv.). Fig. 17 presents the simulation results of

local backup and compares the backup efficiency of the three

methods. In order to reduce the system load to 60%, the

backup is executed the fewest times. The figure reveals that

with the increase of node numbers in the domain, the backup

must be continued to handle the increasing load. If choosing

the backup nodes efficiently, we can support the system load

using only a few backup nodes. Although INS Adv. is only

slightly better than INS Basic, the stability of INS Adv.

appears to be great because the high-efficient nodes are

usually busy nodes.
Fig. 18 examines the performance of the backup nodes

when the node number in the domain increases. The figure

reveals that when the node number increases, INS Adv.

performs as usual and presents certain stability.

Figure 17: Backup efficiency of nodes in small areas

Figure 18: Backup efficiency of nodes in large areas

Figure 19: Remote backup efficiency comparison (one node)

C. LOAD-BALANCING BY INDEX NAME SERVER

As for cross-domain backup, [24], [25] proposed dynamic

monitoring according to the loading performance, while [26]

proposed high-efficient node groups to handle large-scale

cross-domain load. To consider the bandwidth cost of each

domain, we use the INSs to track the load sources by re-mote

backup and select the idle nodes as the backup nodes

Page 274 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

preferentially. In the simulation, we deploy nodes of different

performance randomly and set up the load to a certain extent.

To compare our proposed scheme with heavy loads, nearest

loads, and farthest loads, we examine the performance of the

established backup nodes in each scheme.

The one-node remote backup efficiency comparison as

given in Fig. 19 reveals that the performance of our proposed

INS is not decreased with the increase of nodes. Nearest loads

and heavy loads cannot set up efficient backup because: 1)

they cannot reduce the cross-domain cost of heavily loaded

nodes in handling remote demanding links; and 2) they waste

the backup cost for the inability to backup at the best

locations.

The performance of farthest loads and our INS is quite

similar because both the two schemes manage the cross-

domain cost well and achieve high-efficient backup that is

similar to local backup. INS backup has better efficiency,

which explains that the backup sites are established on the

more efficient locations.

Figure 20: Remote backup efficiency comparison (five nodes)

Figure 21: Remote backup distance cost comparison (one

node)

Fig. 20 displays the five-node remote backup efficiency

comparison. The figure shows that the efficiency of farthest

loads and INS is as usual but the efficiency of nearest loads

and heavy loads obviously improves for 10%, which proves

the above-mentioned cross-domain cost and the inability to

backup at the most efficient locations.

As shown in Fig. 21, our next simulation testifies the

backup capability of each scheme according to distance cost.

It is revealed that although reducing the load effectively

previously, farthest loads does not perform well in transfer

time. On the contrary, compared with other schemes, our

proposed INS decreases the transfer time efficiently and

advantageously.

VII. CONCLUSION

This paper proposed the INS to process not only file

compression, chunk matching, data de-duplication, real-time

feedback control, IP information, and busy level index mon-

itoring, but also file storage, optimized node selection, and

server load balancing. Three major contributions of this paper

include the following.

 By compressing and partitioning the files according to the

chunk size of the cloud file system, we can reduce the

data duplication rate. The processed files are encoded into

the signature by MD5 fingerprint for the INSs to match,

file, designate to the storage servers, and provide

necessary uploading information for the clients. After

downloading and modifying the files, the clients compress

and partition the modified chunks only, encode these

chunks by MD5 fingerprint and reupload the chunks.

 According to the transmission states of storage nodes and

clients, the INSs received the feedback of the previous

transmissions and adjusted the transmission parameters to

attain the optimal performance for the storage nodes.

 Based on several INS parameters that monitor IP in-

formation and the busy level index of each node, our

proposed scheme can determine the location of maxi-

mum loading and trace back to the source of demands to

determine the optimal backup node. Consequently, the

backup efficiency can be improved and the load balancing

among the nodes is considered.

ACKNOWLEDGMENT

Our gratitude goes to W.-M. Lu and Y.-S. Lin for

discussion about some issues of this paper.

REFERENCES

[1] J. B.Connell, “A Huffman–Shannon–Fano code,” Proc.

IEEE, vol. 61, no. 7, pp. 1046–1047, Jul. 1973.

[2] J. Zha, J. Wang, R. Han, and M. Song, “Research on load

balance of service capability interaction management,” in

Proc. 3rd IEEE Int. Conf. Broadband Netw. Multimedia

Technol., Oct. 2008, pp. 212–217.

[3] R. Tong and X. Zhu,. “A load balancing strategy based on

the com-bination of static and dynamic,” in Proc. 2nd Int.

Workshop Database Technol. Appl., Nov. 2010, pp. 1–4.

[4] T.-Y. Wu, W.-T. Lee, Y.-S. Lin, Y.-S. Lin, H.-L. Chan,

and J.-S. Huang, “Dynamic load balancing mechanism

based on cloud storage,” in Proc. Comput. Com. Appl.

Conf., Jan. 2012, pp. 102–106.

[5] Y. Zhang, C. Zhang, Y. Ji, and W. Mi, “ A novel load

balancing scheme for DHT-based server farm,” in Proc.

3rd IEEE Int. Conf. Comput. Broadband Netw.

Multimedia Technol., Oct. 2010, pp. 980–984.

[6] I. Keslassy, C.-S. Chang, N. Mckeown, and D.-S. Lee,

“Optimal load-balancing,” in Proc. IEEE Comput.

Infocom, Mar. 2005, pp. 1712–1722.

[7] L. Zhou and H.-C. Chao. “Multimedia traffic security

architecture for internet of things,” IEEE Netw., vol. 25,

no. 3, pp. 29–34, May 2011.

[8] Y.-X. Lai, C.-F. Lai, C.-C. Hu, H.-C. Chao, and Y.-M.

Huang, “A personalized mobile IPTV system with

seamless video reconstruction algorithm in cloud

Page 275 www.ijiras.com | Email: contact@ijiras.com

International Journal of Innovative Research and Advanced Studies (IJIRAS)

Volume 5 Issue 4, April 2018

ISSN: 2394-4404

networks,” Int. J. Commun. Syst., vol. 24, no. 10, pp.

1375–1387, Oct. 2011.

[9] T.-Y. Wu, C.-Y. Chen, L.-S. Kuo, W.-T. Lee, and H.-C.

Chao, “Cloud-based image processing system with

priority-based data distribution mechanism,” Comp.

Commun., vol. 35, no. 15, pp. 1809–1818, Sep. 2012.

[10] M. Chen, C. M. Leung, L. Shu, and H.-C. Chao, “On

multipath balancing and expanding for wireless

multimedia sensor networks,” Int. J. Ad hoc Ubiquitous

Comput., vol. 9, no. 2. pp. 95–103, Feb. 2012.

[11] Z. Feng, B. Bai, B. Zhao, and J. Su, “Redball: Throttling

shrew attack in cloud data center networks,” J. Internet

Technol., vol. 13, no. 4, pp. 667–680, Jul. 2012.

[12] D. Han and F. Feng, “Research on self-adaptive

distributed storage system,” in Proc. Wireless Commun.

Netw. Mobile Comput., Oct. 2008, pp. 1–4.

[13] J. Wang, P. Varman, and C. Xie, “Avoiding performance

fluctuation in cloud storage,” in Proc. Int. Conf. High

Performance Comput., Dec. 2010, pp. 1–9.

