Enhancing Machine Translation Using Graph Approach

Komal S. Tilekar
Prof. Hema V Kumbhar
Department of Computer Engineering,
Padmabhushan VasantDada Patil Institute of Technology,
Bavdhan, Pune

Abstract: In the present world, the things get change and the use of automatic machines are increasingly popular, the intelligent terminals (such as mobile phones devices, personal computers, laptops and smart phones). The different methodologies or tools that are available for machine translation are Google Translate, Bing Translator, IBM, Moses, etc. Many of the existing system perform not up-to-the mark due to greater time complexity or other constraints. So this leaves a space for some contributions. This paper will focus on the problem to make the extremely interactive user-friendly statistical machine translation system which will compute the linguistic system which can be the toolkit of the smart devices work as a human translator. This method can change domain consultants to modify/add new translation rules so as to boost translation quality. A statistical machine translation (SMT) model that uses hierarchical phrases (HPBT) that contain sub-phrases. The model is formally a synchronous context-free grammar but is learned from a parallel text without any syntactic annotations. Thus, system will performs significantly better than the Alignment Template System, a state-of-the-art phrase- based system.

Keywords: Lexical Parser, Machine Translation, Rule Based Translation, POS tagging

I. INTRODUCTION

In this research work we are converting the simple English affirmative sentences to Hindi sentences. This is basically a machine translation. We have chosen the transfer based approach which is the thin line between the semantic and the direct approach. For that we have designed the parser which helps us to map the English sentence binding to the rules and then getting converted into target Language. English to Hindi language Translator (EHLT) is a field of computer science and linguistics concerned with the interactions between computers and human (natural) language.

EHLT systems convert information from computer databases into readable human language. Natural systems convert samples of human language into more formal representations such as parse trees or first-order logic structures that are easier for computer programs to manipulate. The most explanatory method for presenting what actually happens within a NaturalLanguage Processing system is by means of the ‘levels of language’ approach. This is also referred to as the synchronic model of language and is distinguished from the earlier sequential model, which hypothesizes that the levels of human language processing follow one another in a strictly sequential manner. The morphological level deals with the componential nature of words, which are composed of morphemes – the smallest units of meaning.

At the lexical level, humans, as well as NLP systems, interpret the meaning of individual words. Several types of processing contribute to word-level understanding – the first of these being assignment of a single part-of-speech tag to each word. In this processing, words that can function as more than one part-of-speech are assigned the most probable part-of-speech tag based on the context in which they occur.

Additionally at the lexical level, those words that have only one possible sense or meaning can be replaced by a semantic representation of that meaning. Rule-Based Machine Translation (RBMT) also known as “Knowledge-Based
Machine Translation”; “Classical Approach” of MT) is a
general term that denotes machine translation systems based
on linguistic information about source and target languages
basically retrieved from (unilingual, bilingual or multilingual)
dictionaries and grammars covering the main semantic,
morphological, and syntactic regularities of each language
respectively. Having input sentences (in some source
language), an RBMT system generates them to output
sentences (in some target language) on the basis of
morphological, syntactic, and semantic analysis of both the
source and the target languages involved in a concrete
translation task.

This paper is classified as below where section 2
discusses past works as Literature Survey. Section 3 reveals
the detailing of our proposed methodology. The evolution of
our methodology is performed in section 4. Finally section 5
concludes this paper with some scope for future extensions.

II. LITERATURE SURVEY

In statistical machine translation, we use the bilingual
corpus in order to improve the quality of translation. [1]
discusses about its viewpoints regarding the use of corpus. We
can collect more and more bilingual corpus, such as extracting
the sentence pairs from the comparable corpus. But if we
consume larger corpus, more resources will be used. The
solution for this problem can be that we can select only a part
of corpus to train the translation model that will reduce the
time and space complexity while building machine translation
system and also will not decrease the translation quality.

In [2], they combine the phrase-based models and group
of reconstructing rules on English sentence for producing
reordering English sentence. They also incorporate
morphological information by using a Morph Analyzer. Since
morphological and parsing tools are not much widely
available for Indian languages, an approach like this, which
minimizes the use of such tools for the target language, would
be quite handy.

A natural language word (aka, surface form) may be used
in different contexts of sentences and thus represents different
meaning. Morphological Analysis (MA) is a method used for
decoding the meaning kept in every word and generates root
(i.e., main meaning bearing unit of the word) of the word, the
lexical category of the root, and associated grammatical
features. As the words are having multiple grammatical
functionalities when they are used in different contexts, they
will have alternative morphological interpretations. It
completely depends on the type of language that the average
number morphological alternatives of a word will have.

There may be common vocabulary words of morphologically rich. The categorical pruning can be done
with the Part-of-Speech tags of the words. Also, we can define
rules to prune out some analyses having incompatibility with
local dependencies. Bigram-based pruning approach is used
for pruning alternatives having roots of same lexical class.

In [3], they have systematically pruned out the
morphological analyses of the words which are incompatible
with the context of the sentence. For this purpose, they have
used extracted and used various syntactic information (like
Part-Of-Speech, chunk properties) of the input sentences.
Categorical pruning is done with the Part-of-Speech tags of
the words. Rules are defined to prune out some analyses
having incompatibility with local dependencies.

[4] paper tells us that they model the content of phrases,
use the topic models, and estimate how much the source
phrase is similar to the target phrase by each phrase pair. So
the pruning of the irrelevant and low-quality phrase pairs from
the phrase-table can be done by checking their content instead
of just their number of occurrences in the training corpora,
unlike the other common pruning methods. There may be
many phrases that have low co-occurrences, but have the same
meanings in the phrase-table. The methods which are just
based on the counts and co-occurrences will prune these
phrase pairs as noisy ones. Thus, this method helps us to prune
over 50% of the phrase table without much loss in translation
quality.

There is a concept of OAK Parser which is used to
analyze the input English text to get the part of speech (POS)
for each word in the text as a pre-translation process using the
C# language. There are validation rules that can be applied in
both the database design and the programming code in order
to ensure the integrity of data. A major design goal of [5]
system is that it will be used as a stand-alone tool, and can be
very well integrated with a general machine translation system
for English sentences But there were many shortcomings in
the output of MT, due to either faulty analysis of the source
language text or faulty generation of the target language text.

In [6], a technique is specifically developed for scenarios
where bilingual corpora are provided. Furthermore, It is stated
that the chance to understand that how the phrase-based
extraction model has increased both the phrasal coverage and
translation accuracy of the syntax-based model. So by
following such approach, we are permitted to use the phrase
translation technique into a statistical MT approach as well.
This can be achieved by the help of Link Parser which is a
sentence parser available in Link Grammar Formalism.

MT methodologies are broadly classified into two,
namely rule based approach and corpus based approach. This
research work discussed about only rule based approach.
Vauquois triangle is the concept behind this. It basically tells
to transform the source language into a target language. In this
method, there is an increased amount of analysis, on both
sides. The content of [7] mostly directs us to focus on syntax
and capturing syntactic variance between English and Tamil.
Synchronous Tree Adjoining Grammar (STAG) formalism
can be used to represent both English and Tamil structures.
Encouraging results thus, can be obtained even with very
limited target resources. So there is a need to develop the
statistical parser which can demonstrate the right parse from
the erroneous parses. But the attribute of speed remains
inferior.

In the process of machine translation, handling
prepositions is the main issue. There are many various kinds
of prepositions that are being used in English, which are
translated into postpositions in Telugu. For selecting the
appropriate postposition in Telugu, time, gender, place,
context and many other features have an important part. There
will be various situations when there will be different
meanings of the same prepositions and the appropriate one
should be selected based on the context. Through the proposed algorithm frequently used prepositions can be handled and translated perfectly.

The [8] states about writing effective set of rules and building a dictionary that is rich in words, so that the translation system can deal with any kind of sentences. Furthermore, it can also be extended to identify the phrases and idioms, other functional words and translate them in a better manner instead of direct translation.

III. PROPOSED METHODOLOGY

Project can be design and implement with the following modules of development cycle. Research work implementation is been designed with layered architecture approach. Following are four layers

- **LAYER 1: GRAPH DATABASE GENERATION**

 This layer System accepts input of phrase and alternative phrase placed in excel sheet. Graph is been degenerated for each verdict indicating phrase and their alternative phrase with corresponding weight. Graph database is been generated on neo4j and entities are been represented on graph.

- **LAYER 2: PHRASE PREPROCESSING**

 Here this layer System accepts user requirement for alternative phrases. Subgraph is been extracted from database. Following this graph is been sent for preprocessing where every phrase is been processed. Four major task are been performed segmentation, Token generation, Stop word elimination, stemming.

 - **Segmentation of Sentences:** Finding boundary mark to separate found sentences from eliminated from phrases. Terms like “is”, “the”, “a” are been eliminated. This process reduces time complexity of processing.
 - **Stemmer:** This process a Stemmer is been applied to reduce words to their root word .like {compute, computing, computational} are been reduced to compute suffix like “ing”, “ed” are been eliminated from phrases.

- **LAYER 3: CREATION OF BUCKET**

 Similarity search is been enhanced with generation of matrix representing combination of words and phrases. This process every word from third place is been splitted to generate bucket of words for similarity search. A single vector termed as bucket is been used to hold this word. Process is illustrated as Aurangabad given to creation of bucket {Aur, Aura, Aurang, Auranga, Aurangab, Aurangaba, Aurangabad}.

- **LAYER 4: PATTERN EVALUATION**

 Most Vital Layer in procedure where core procedure is been executed.

 Pattern of Phrases are been evaluated with power set procedure applied to phrases. A power set generated is subset of all entities from singular set to union generated set.

 As such Powerset of \{P,Q,R\} is \{
 \{
 \}
 \{P\}
 \{Q\}
 \{R\}
 \{P,Q\}
 \{P,R\}
 \{Q,R\}
 \{P,Q,R\}
 \}

 The above set is been used to find relation among nodes from graph database to perform subgraph matching.

POWER SET PROCEDURE

A subset can be represented as an array of boolean values of the same dimension because the set, referred to as a characteristic vector. Each and every boolean worth suggests whether the corresponding element within the set is present or absent in the subset.

Above power set procedure for \{P,Q,R\} can correspond to as below mentioned.

\[
\begin{align*}
[0, 0, 0] &= \{\} \\
[1, 0, 0] &= \{P\} \\
[0, 1, 0] &= \{Q\} \\
[0, 0, 1] &= \{R\} \\
[1, 1, 0] &= \{P,Q\} \\
[1, 0, 1] &= \{P, R\} \\
[0, 1, 1] &= \{Q, R\} \\
[1, 1, 1] &= \{P,Q, R\}
\end{align*}
\]

Procedure simply needs to produce array as above with binary counting.

SUBGRAPH RECOGNITION

Subsequently subgraph identification is been done

Here all of the familiar words are been checked with the existing vertices of the graph information base and returns matched vector.
CORRELATION IDENTIFICATION

Here on this module resultant vector received from the last step is been feeding to the Pearson correlation to establish the correlation between the phrase phrases and the vertex feedback to extract the sub graph.

Here in this step a sub graph identification techniques is intensified based on the correlation of the edges with the aid of utilizing man or woman correlation procedure between the already recognized sub graphs.

Pearson correlation is been evaluated with equation (1)

\[
r = \frac{\sum_{i=1}^{n} x_i y_i - \frac{\sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n}\right)\left(\sum_{i=1}^{n} y_i^2 - \frac{(\sum_{i=1}^{n} y_i)^2}{n}\right)}}
\]

(1)

Where x and y characterize the vectors of the semantic phrases in our case it’s So this equation yields the correlation effect as 1. Correlation output nearer to 1 represents extra equivalent, Nearer to zero represents varied.

REDUCTION: PRUNING PROCESS

Right here in this step first unwanted vertices from the sub graph is been eliminated using horizontal and vertical pruning methods, headquartered on the aid of the graph vertices.

The whole proposed system is expressed mathematically with the below model.

Mathematical Model

1. Let S = \{ \} be as a Machine translation
2. Identify input as P = \{p_1, p_2, p_3, ..., p_n\}
 Where p_n = Phrase data
 S = \{p_n\}
3. Identify T_d as Output i.e. Translated data
 S = \{P_\text{d}, T_\text{d}\}
4. Identify process P = \{P_p, B_c, S_r, P_r, P_f\}
 Where,
 P_p = Preprocessing
 B_c = Bucket Creation
 S_r = Subgraph Identification
 P_c = Pearson Correlation
 P_r = Pruning
 S = \{P_r, P_p, B_c, S_r, P_r, P_f, T_d\}

The union of all subset of S Gives the final proposed system.

IV. RESULTS AND DISCUSSIONS

The proposed system of machine translation is developed on java based windows machine which uses Netbeans as IDE. For the experiments and performance evaluation of the system set of phrases are feed to the system to create a semantic graph and store it. To store the graph proposed system uses neo4j graph database. And developed system is put under hammer in many scenarios to prove its authenticity as mentioned in below tests.

MEAN ABSOLUTE ERROR: Mean Absolute Error (MAE) is one of the most using entities for scaling error rates of any outcomes. Here in our experiment MAE is used to check the error rates of the machine translation that yielded for the given String using graph approach. MAE can be defined as shown below.

MAE = \frac{\sum_{i,j} | r_{i,j} - r'_{i,j} | }{N} \quad -----(1)

Where,

r_{i,j} ----represents the expected translation for the given string.

r'_{i,j} ----represents the predicted translation for the given string.

N ---- represents the number of predicted values.

MAE for different runs is tabulated in the below table 1.

<table>
<thead>
<tr>
<th>No of Runs</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7062</td>
</tr>
<tr>
<td>2</td>
<td>0.7124</td>
</tr>
<tr>
<td>3</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td>0.62</td>
</tr>
<tr>
<td>5</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Table 1: MAE for different Runs

Figure 2: Performance Graph of MAE for different query String

The plot in the figure 2 clearly indicates that our system yields MAE of 0.64 that is good sign of machine translation in the first attempt.

V. CONCLUSION AND FUTURE SCOPE

As the Unicode is widely using in programing languages many applications seeks the translation of languages. This is a challenging job for the application developers. Many tools are available which are translating the given phrases from one language to other. For efficient working of machine translation there is need of huge database is required for the tool to work, otherwise these tools translate the phrases non-semantically.

So proposed system introduces an idea of using NoSQL graph database to translate the string by analyzing the proper correlated patterns, which yields effective results with less size of database.

Machine translation technique can be enhance in the future by implementing the same for multiple languages in web paradigm and also this can be develop as an API.

REFERENCES

