Intuitionistic Fuzzy Contra **^β** Generalized Continuous Mappings

Saranya M

MSc Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India Jayanthi D

Assistant Professor of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India

Abstract: The purpose of this paper is to introduce the notion of intuitionistic fuzzy contra β generalized continuous mappings and study their behaviour and properties in intuitionistic fuzzy topological spaces. Additionally we obtain some interesting theorems.

Keywords: Intuitionistic fuzzy topology, intuitionistic fuzzy β generalized closed set, intuitionistic fuzzy β generalized continuous mappings, intuitionistic fuzzy contra β generalized continuous mappings.

I. INTRODUCTION

Atanassov [1] introduced intuitionistic fuzzy sets using the notion of fuzzy sets. Coker [2] introduced intuitionistic fuzzy topological spaces. The purpose of this paper is to introduce the notion of intuitionistic fuzzy contra β generalized continuous mappings and study their behaviour and properties in intuitionistic fuzzy topological spaces. Additionally we obtain some interesting theorems.

II. PRELIMINARIES

DEFINITION 2.1: [1] An *intuitionistic fuzzy set* (IFS for short) A is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

where the functions $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element x $\in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each x $\in X$. Denote by IFS (X), the set of all intuitionistic fuzzy sets in X.

An intuitionistic fuzzy set A in X is simply denoted by A = $\langle x, \mu_A, \nu_A \rangle$ instead of denoting

$$A = \{ \langle x, \, \mu_A(x), \, \nu_A(x) \rangle : x \in X \}.$$

DEFINITION 2.2: [1] Let A and B be two IFSs of the form $A = \{(x, \mu_A(x), \nu_A(x)): x \in X\}$ and

- B = { $\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X$ }. Then,
- $\checkmark \quad A \subseteq B \text{ if and only if } \mu_A(x) \leq \mu_B(x) \text{ and } \nu_A(x) \geq \nu_B(x) \\ \text{ for all } x \in X,$
- ✓ A = B if and only if $A \subseteq B$ and $A \supseteq B$,
- $\checkmark \quad A^{c} = \{ \langle x, v_{A}(x), \mu_{A}(x) \rangle : x \in X \},\$
- $\checkmark \quad A \cup B = \{ \langle x, \, \mu_A(x) \lor \mu_B(x), \, \nu_A(x) \land \nu_B(x) \rangle : x \in X \},$
- $\checkmark \quad A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}.$

The intuitionistic fuzzy sets $0 \sim = \langle x, 0, 1 \rangle$ and $1 \sim = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of X.

DEFINITION 2.3: [2] An *intuitionistic fuzzy topology* (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

- ✓ $0 \sim, 1 \sim \in \tau$,
- $\checkmark \quad G_1 \cap G_2 \in \tau \text{ for any } G_1, G_2 \in \tau,$
- ✓ \cup G_i ∈ τ for any family {G_i : i ∈ J} ⊆ τ.

In this case the pair (X, τ) is called an *intuitionistic fuzzy* topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

COROLLARY 2.4: [2] Let A, A_i ($i \in J$) be intuitionistic fuzzy sets in X and B, $B_i(j \in K)$ be intuitionistic fuzzy sets in Y and f: $X \rightarrow Y$ be a function. Then

- $A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2)$
- $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$ ~
- c) $A \subseteq f^{-1}(f(A))$ [If f is injective, then $A = f^{-1}(f(A))$] ~
- d) $f(f^{-1}(B)) \subseteq B$ [If f is surjective, then $B = f(f^{-1}(B))$]
- e) $f^{-1}(UB_i) = U f^{-1}(B_i)$ f) $f^{-1}(\cap B_i) = \cap f^{-1}(B_i)$
- g) $f^{-1}(0 \sim) = 0 \sim$
- h) $f^{-1}(1 \sim) = 1 \sim$
- $f^{-1}(B^{c}) = (f^{-1}(B))^{c}$

DEFINITION 2.5: [12] Two IFSs are said to be qcoincident (A q B in short) if and only if there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

DEFINITION 2.6: [3] An intuitionistic fuzzy point (IFP for short), written as $p_{(\alpha,\beta)}$ is defined to be an intuitionistic fuzzy set of X given by

- $p_{(\alpha,\beta)}(\mathbf{x}) = \begin{cases} (\alpha,\beta) \\ (0,1) \end{cases}$ if x = p,
- otherwise.

An intuitionistic fuzzy point $p_{(\alpha,\beta)}$ is said to belong to a set A if $\alpha \leq \mu_A$ and $\beta \geq \nu_A$.

DEFINITION 2.7: [6] Let A be an IFS in an IFTS (X, τ) . Then the β -interior and β -closure of A are defined as

 $Bint(A) = \bigcup \{G \mid G \text{ is an IFBOS in } X \text{ and } G \subseteq A \}.$

 $\beta cl(A) = \bigcap \{K \mid K \text{ is an IF}\beta CS \text{ in } X \text{ and } A \subseteq K\}.$

Note that for any IFS A in (X, τ), we have $\beta cl(A^c) =$ $(\beta int(A))^{c}$ and $\beta int(A^{c}) = (\beta cl(A))^{c}$.

DEFINITION 2.8: [8] An IFS A in an IFTS (X, τ) is said to be an *intuitionistic fuzzy* β generalized closed set (IF β GCS for short) if $\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF βOS in (Χ, τ).

The complement A^{c} of an IF β GCS A in an IFTS (X, τ) is called an *intuitionistic fuzzy* β generalized open set (IF β GOS in short) in X [9].

DEFINITION 2.9: [4] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an *intuitionistic fuzzy continuous* (IF continuous for short) mapping if $f^{-1}(B) \in$ IFO(X) for every $B \in \sigma$

DEFINITION 2.10: [10] If every IF β GCS in (X, τ) is an IF β CS in (X, τ), then the space can be called as an intuitionistic fuzzy β generalized T_{1/2} space (IF β_g T_{1/2} in short).

DEFINITION 2.11: [5] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- intuitionistic fuzzy contra continuous (IFC continuous for short) mapping if $f^{-1}(B) \in IFO(X)$ for each IFCS B in Y
- intuitionistic fuzzy contra α continuous (IFC α continuous for short) mapping if $f^{-1}(B) \in IF\alpha O(X)$ for each IFCS B in Y
- intuitionistic fuzzy contra pre continuous (IFCP continuous for short) mapping if $f^{-1}(B) \in IFPO(X)$ for each IFCS B in Y

III. INTUITIONISTIC FUZZY CONTRA β GENERALIZED CONTINUOUS MAPPINGS

In this section we have introduced intuitionistic fuzzy contra ß generalized continuous mappings and investigated some of their properties.

DEFINITION 3.1: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy contra β generalized continuous (IFC β G continuous for short) mapping if $f^{-1}(V)$ is an IF β GCS in (X, τ) for every IFOS V of (Y, σ).

For the sake of simplicity, we shall use the notation A = $\langle x, (\mu_a, \mu_b), (\nu_{a,\nu b}) \rangle$ instead of A = $\langle x, (a/\mu_a, b/\mu_b), (a/\nu_{a,\nu}b/\nu_b) \rangle$ in the following examples.

Similarly we shall use the notation B = $\langle y, (\mu_u, \mu_v), (\nu_u, \mu_v) \rangle$ $|v_v\rangle$ instead of B = $\langle y, (u/\mu_u, v/\mu_v), (u/v_u, v/v_v) \rangle$ in the following examples.

EXAMPLE 3.2: Let $X = \{a, b\}, Y = \{u, v\}$ and $G_1 =$ $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle, G_2 = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle.$ Then $\tau = \{0\sim, G_1, 1\sim\}$ and $\sigma = \{0\sim, G_2, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The IFS $G_2 = \langle v, (0.4_u \ 0.3_v), (0.6_u, 0.7_v) \rangle$ is an IFOS in Y. Then $f^{-1}(G_2) = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_a$ $[0,1], v_{b} \in [0,1] / 0 \le \mu_{a} + v_{a} \le 1 \text{ and } 0 \le \mu_{b} + v_{b} \le 1$.

Hence f⁻¹ (G₂) is an IF β GCS in (X, τ). Therefore f is an IFCβG continuous mapping.

REMARK 3.3: Every IFC continuous mapping, IFCa continuous mapping, IFCP continuous mapping, IFCS continuous mapping, IFC_β continuous mapping and IFCSP continuous mapping are IFCBG continuous mapping but the converses are not true in general. This can be seen from the following examples.

EXAMPLE 3.4: Let $X = \{a, b\}, Y = \{u, v\}$ and $G_1 =$ $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle, G_2 = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle.$ Then $\tau = \{0\sim, G_1, 1\sim\}$ and $\sigma = \{0\sim, G_2, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The IFS $G_2 = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$ is an IFOS in Y. Then $f^{-1}(G_2) = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_a$ $[0,1], v_b \in [0,1] / 0 \le \mu_a + v_a \le 1 \text{ and } 0 \le \mu_b + v_b \le 1 \}.$

Hence f⁻¹ (G₂) is an IF β GCS in (X, τ). Therefore f is an IFC β G continuous mapping but since f⁻¹ (G₂) = $\langle x, (0.4_a, 0.4_a) \rangle$ $(0.3_{\rm b}), (0.6_{\rm a}, 0.7_{\rm b})$ is not an IFCS in X, as $cl(f^{-1}(G_2)) = G_1^{c} \neq f$ $^{-1}$ (G₂), f is not an IFC continuous mapping.

EXAMPLE 3.5: Let $X = \{a, b\}, Y = \{u, v\}$ and $G_1 =$ $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle, G_2 = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle.$ Then $\tau = \{0\sim, G_1 \mid 1\sim\}$ and $\sigma = \{0\sim, G_2 \mid 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The IFS $G_2 = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$ is an IFOS in Y. Then $f^{-1}(G_2) = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1 \}.$

Hence $f^{-1}(G_2)$ is an IF β GCS in (X, τ) . Therefore f is an IFC β G continuous mapping. We have $cl(int(cl(f^{-1}(G_2)))) = cl(int(G_1^c)) = cl(G_1) = G_1^c \notin f^{-1}(G_2)$. Hence $f^{-1}(G_2)$ is not an IF α CS in X. Hence f is not an IFC α continuous mapping.

EXAMPLE 3.6: Let X = { a, b }, Y = { u, v } and G₁ = $\langle x, (0.5_{a_1}, 0.6_b), (0.5_a, 0.4_b) \rangle$, G₂ = $\langle y, (0.5_u, 0.7_v), (0.5_u, 0.3_v) \rangle$. Then $\tau = \{0 \sim, G_1, 1 \sim\}$ and $\sigma = \{0 \sim, G_2, 1 \sim\}$ are IFTs on X and Y respectively. Define a mapping f: (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v. The IFS G₂ = $\langle y, (0.5_u, 0.7_v), (0.5_u, 0.3_v) \rangle$ is an IFOS in Y. Then f⁻¹(G₂) = $\langle x, (0.5_a, 0.7_b), (0.5_a, 0.3_b) \rangle$ is an IFS in X.

Then, IF β C(X) = {0~, 1~, $\mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \mu_b < 0.6$ whenever $\mu_a \ge 0.5, \mu_a < 0.5$ whenever $\mu_b \ge 0.6, 0 \le \mu_a + \nu_a \le 1$ and $0 \le \mu_b + \nu_b \le 1$ }.

Hence $f^{-1}(G_2)$ is an IF β GCS in (X, τ) . Therefore f is an IFC β G continuous mapping. We have $cl(int(f^{-1}(G_2))) = cl(G_1) = 1 \sim \notin f^{-1}(G_2)$. Hence $f^{-1}(G_2)$ is not an IFPCS in X. Hence f is not an IFCP continuous mapping.

EXAMPLE 3.7: Let X = { a, b }, Y = { u, v } and G₁ = $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, G₂ = $\langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$. Then $\tau = \{0\sim, G_1, 1\sim\}$ and $\sigma = \{0\sim, G_2, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The IFS G₂ = $\langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$ is an IFOS in Y. Then f⁻¹(G₂) = $\langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$

Hence $f^{-1}(G_2)$ is an IF β GCS in (X, τ) . Therefore f is an IFC β G continuous mapping. We have int(cl($f^{-1}(G_2)$)) = int(G_1^{c}) = $G_1 \not\subseteq f^{-1}(G_2) = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$. Hence f $^{-1}(G_2)$ is not an IFSCS in X. Hence f is not an IFCS continuous mapping.

EXAMPLE 3.8: Let X = { a, b }, Y = { u, v } and G₁ = $\langle x, (0.5_{a_1}, 0.7_b), (0.5_a, 0.3_b) \rangle$, G₂ = $\langle y, (0.5_u, 0.8_v), (0.5_u, 0.2_v) \rangle$. Then $\tau = \{0 \sim, G_1, 1 \sim\}$ and $\sigma = \{0 \sim, G_2, 1 \sim\}$ are IFTs on X and Y respectively. Define a mapping f: (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v. The IFS G₂ = $\langle y, (0.5_u, 0.8_v), (0.5_u, 0.2_v) \rangle$ is an IFOS in Y. Then f⁻¹(G₂) = $\langle x, (0.5_a, 0.8_b), (0.5_a, 0.2_b) \rangle$ is an IFS in X.

Then, IF β C(X) = {0~, 1~, $\mu_a \in [0,1]$, $\mu_b \in [0,1]$, $\nu_a \in [0,1]$, $\nu_b \in [0,1]$ / provided $\mu_b < 0.7$ whenever $\mu_a \ge 0.5$, $\mu_a < 0.5$ whenever $\mu_b \ge 0.7$, $0 \le \mu_a + \nu_a \le 1$ and $0 \le \mu_b + \nu_b \le 1$ }.

Hence f⁻¹ (G₂) is an IF β GCS in (X, τ). Therefore f is an IFC β G continuous mapping. We have int(cl(int(f⁻¹ (G₂)))) = int(cl(G₁)) = int(1~) = 1~ \notin f⁻¹ (G₂) = \langle x, (0.5_a, 0.8_b), (0.5_a, 0.2_b) \rangle . Hence f⁻¹ (G₂) is not an IF β CS in X. Hence f is not an IFC β continuous mapping.

EXAMPLE 3.9: Let X = { a, b }, Y = { u, v } and G₁ = $\langle x, (0.5_{a}, 0.4_{b}), (0.5_{a}, 0.6_{b}) \rangle$, G₂ = $\langle y, (0.4_{u}, 0.3_{v}), (0.6_{u}, 0.7_{v}) \rangle$. Then $\tau = \{0\sim, G_{1}, 1\sim\}$ and $\sigma = \{0\sim, G_{2}, 1\sim\}$ are IFTs on X and Y respectively. Define a mapping f: (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v. The IFS G₂ = $\langle y, (0.4_{u}, 0.3_{v}), (0.6_{u}, 0.7_{v}) \rangle$ is an IFOS in Y. Then f⁻¹(G₂) = $\langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1], /0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$

Hence f⁻¹ (G₂) is an IF β GCS in (X, τ). Therefore f is an IFC β G continuous mapping.

Since IFPC(X) = {0 ~, 1 ~, $\mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ either } \mu_b \ge 0.6 \text{ or } \mu_b < 0.4 \text{ whenever } \mu_a \ge 0.5, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1$ }

There exists no IFPCS B in X such that $int(B) \subseteq f^{-1}(G_2) \subseteq B$, $f^{-1}(G_2)$ is not an IFSPCS in X. Hence f is not an IFCSP continuous mapping.

REMARK 3.10: IFCG continuous mappings and IFC β G continuous mappings are independent to each other.

EXAMPLE 3.11: Let X = { a, b }, Y = { u, v } and G_1 = $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, $G_2 = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$. Then $\tau = \{0 \sim, G_1, 1 \sim\}$ and $\sigma = \{0 \sim, G_2, 1 \sim\}$ are IFTs on X and Y respectively. Define a mapping f: (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v. The IFS $G_2 = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$ is an IFOS in Y. Then f⁻¹ (G₂) = $\langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$

Hence $f^{-1}(G_2)$ is an IF β GCS in (X, τ) . Therefore f is an IFC β G continuous mapping. We have $cl(f^{-1}(G_2)) = G_1^{c} \notin G_1$. Hence $f^{-1}(G_2)$ is not an IFGCS in X. Hence f is not an IFCG continuous mapping.

EXAMPLE 3.12: Let X = { a, b }, Y = { u, v } and G₁ = $\langle x, (0.5_a, 0.5_b), (0.5_a, 0.5_b) \rangle$, G₂ = $\langle x, (0.3_a, 0.1_b), (0.7_a, 0.8_b) \rangle$ and G₃ = $\langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$. Then $\tau = \{0 \sim, G_1, G_2, 1 \sim\}$ and $\sigma = \{0 \sim, G_3, 1 \sim\}$ are IFTs on X and Y respectively. Define a mapping f: (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v. Then f is an IFCG continuous mapping, where G₃ is an IFOS in (Y, σ).

Now IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ either } \mu_a \ge 0.5 \text{ and } \mu_b \ge 0.5 \text{ or } \mu_a < 0.3 \text{ and } \mu_b < 0.1, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1 \}.$

We have $f^{-1}(G_3) \subseteq G_1$ but $\beta cl(f^{-1}(G_3)) = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle = 1 \sim \notin G_1$. Hence $f^{-1}(G_3)$ is not an IF β GCS in X. Hence f is not an IFC β G continuous mapping.

THEOREM 3.13: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFC β G continuous mapping if and only if the inverse image of each IFCS in Y is an IF β GOS in X.

PROOF: (NECESSITY): Let A be an IFCS in Y. This implies A^c is an IFOS in Y. Then $f^{-1}(A^c)$ is an IF β GCS in X, by hypothesis. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is an IF β GOS in X.

(SUFFICIENCY): Let A be an IFOS in Y. Then A^c is an IFCS in Y. By hypothesis f⁻¹ (A^c) is IF β GOS in X. Since f⁻¹ (A^c) = (f⁻¹ (A))^c, (f⁻¹ (A))^c is an IF β GOS in X. Therefore f⁻¹ (A) is an IF β GCS in X. Hence f is an IFC β G continuous mapping.

THEOREM 3.14: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a mapping and let f⁻¹(A) be an IF β OS in X for every IFCS A in Y. Then f is an IFC β G continuous mapping.

PROOF: Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IF β OS in X, by hypothesis. Since every IF β OS is an IF β GOS [9], $f^{-1}(A)$ is an IF β GOS in X. Hence f is an IFC β G continuous mapping, by Theorem 3.13.

THEOREM 3.15: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a bijective mapping. Suppose that one of the following properties hold:

- ✓ $f^{-1}(cl(B)) \subseteq int(\beta cl(f^{-1}(B)))$ for each IFS B in Y
- ✓ $cl(βint(f^{-1}(B))) ⊆ f^{-1}(int(B))$ for each IFS B in Y
- ✓ f(cl(βint(A))) ⊆ int(f(A)) for each IFS A in X

✓ $f(cl(A)) \subseteq int(f(A))$ for each IFβOS A in X Then f is an IFCβG continuous mapping.

PROOF: (i) ⇒ (ii) is obvious by taking complement of (i). (ii) ⇒ (iii) Let A ⊆ X. Put B = f(A) in Y. This implies A = f⁻¹ (f(A)) = f⁻¹ (B) in X. Now cl(βint(A)) = cl(βint(f⁻¹(B))) ⊆ f⁻¹ (int(B)) by (ii). Therefore f(cl(βint(A))) ⊆ f (f⁻¹(int(B))) = int(B) = int(f(A)).

(iii) \Rightarrow (iv) Let $A \subseteq X$ be an IF β OS. Then β int(A) = A. By hypothesis, f(cl(β int(A))) \subseteq int(f(A)). Therefore f(cl(A)) = f(cl(β int(A))) \subseteq int(f(A)).

Suppose (iv) holds. Let A be an IFOS in Y. Then $f^{-1}(A)$ is an IFS in X and β int($f^{-1}(A)$) is an IF β OS in X. Hence by hypothesis, f(cl(β int($f^{-1}(A)$))) \subseteq int(f(β int($f^{-1}(A)$))) \subseteq int(f($f^{-1}(A)$)) \equiv int(A) \subseteq A. Therefore cl(β int($f^{-1}(A)$)) \equiv f⁻¹(f(cl(β int($f^{-1}(A)$)))) \subseteq f⁻¹(A). Now cl(int($f^{-1}(A)$))) \subseteq cl(β int($f^{-1}(A)$))) \subseteq f⁻¹(A). This implies f⁻¹(A) is an IFPCS in X and hence an IF β GCS [8] in X. Thus f is an IFC β G continuous mapping.

THEOREM 3.16: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a mapping. Suppose that one of the following properties hold:

- ✓ $f(\beta cl(A)) \subseteq int(f(A))$ for each IFS A in X
- ✓ $\beta cl(f^{-1}(B)) \subseteq f^{-1}(int(B))$ for each IFS B in Y
- ✓ $f^{-1}(cl(B)) \subseteq \betaint(f^{-1}(B))$ for each IFS B in Y Then f is an IFCβG continuous mapping.

PROOF: (i) \Rightarrow (ii) Let B \subseteq Y. Then f⁻¹(B) is an IFS in X. By hypothesis, f(β cl(f⁻¹(B))) \subseteq int(f(f⁻¹(B))) \subseteq int(B). Now β cl(f⁻¹(B)) \subseteq f⁻¹(f(β cl(f⁻¹(B)))) \subseteq f⁻¹(int(B)).

(ii) \Rightarrow (iii) is obvious by taking complement in (ii).

Suppose (iii) holds. Let A be an IFCS in Y. Then cl(A) = A and $f^{-1}(A)$ is an IFS in X. Now $f^{-1}(A) = f^{-1}(cl(A)) \subseteq \beta$ int($f^{-1}(A)$) $\subseteq f^{-1}(A)$, by hypothesis. This implies $f^{-1}(A)$ is an IF β OS in X and hence an IF β GOS [9] in X. Therefore f is an IFC β G continuous mapping.

THEOREM 3.17: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a bijective mapping. Then f is an IFC β G continuous mapping if cl(f(A)) \subseteq f(β int(A)) for every IFS A in X.

PROOF: Let A be an IFCS in Y. Then cl(A) = A and f⁻¹(A) is an IFS in X. By hypothesis $cl(f(f^{-1}(A))) \subseteq f(\beta int(f^{-1}(A)))$. Since f is an onto, $f(f^{-1}(A)) = A$. Therefore $A = cl(A) = cl(f(f^{-1}(A))) \subseteq f(\beta int(f^{-1}(A)))$. Now f⁻¹(A) $\subseteq f^{-1}(f(\beta int(f^{-1}(A)))$.

¹(A))) = β int(f⁻¹(A)) \subseteq f⁻¹(A). Hence f⁻¹(A) is an IF β OS in X and hence an IF β GOS [9] in X. Thus f is an IFC β G continuous mapping.

THEOREM 3.18: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFC β G continuous mapping, where X is an IF $\beta_g T_{1/2}$ space, then the following conditions hold:

- ✓ $\beta cl(f^{-1}(B)) \subseteq f^{-1}(int(\beta cl(B)))$ for every IFOS in Y,
- ✓ $f^{-1}(cl(\beta int(B))) \subseteq \beta int(f^{-1}(B))$ for every IFCS B in Y.

PROOF: (i) Let $B \subseteq Y$ be an IFOS. By hypothesis $f^{-1}(B)$ is an IF β GCS in X. Since X is an IF β gT_{1/2} space, $f^{-1}(B)$ is an IF β CS in X. This implies β cl($f^{-1}(B)) = f^{-1}(B) \subseteq f^{-1}(int(B)) \subseteq f^{-1}(int(\beta cl(B)))$.

(ii) can be proved easily by taking the complement of (i).

THEOREM 3.19: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFC β G continuous mapping and g: $(Y, \sigma) \rightarrow (Z, \delta)$ is an IF continuous mapping then g \circ f : $(X, \tau) \rightarrow (Z, \delta)$ is an IFC β G continuous mapping.

PROOF: Let V be an IFOS in Z. Then g⁻¹(V) is an IFOS in Y, since g is an IF continuous mapping. Since f is an IFC β G continuous mapping, f⁻¹(g⁻¹(V)) is an IF β GCS in X. Therefore g \circ f an IFC β G continuous mapping.

THEOREM 3.20: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFC β G continuous mapping and g: $(Y, \sigma) \rightarrow (Z, \delta)$ is an IFC continuous mapping then g \circ f : $(X, \tau) \rightarrow (Z, \delta)$ is an IF β G continuous mapping.

PROOF: Let V be an IFOS in Z. Then $g^{-1}(V)$ is an IFCS in Y, since g is an IFC continuous mapping. Since f is an IFC β G continuous mapping, $f^{-1}(g^{-1}(V))$ is an IF β GOS in X. Therefore $g \circ f$ is an IF β G continuous mapping.

THEOREM 3.21: For a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$, where X is an IF $\beta_g T_{1/2}$ space, the following are equivalent: \checkmark f is an IFC β G continuous mapping

- ✓ For every IFCS A in Y and for every IFP $p_{(\alpha,\beta)} \in X$, if $f(p_{(\alpha,\beta)})_q A$ then $p_{(\alpha,\beta)} q \beta int(f^{-1}(A))$
- ✓ For every IFCS in Y and for any IFP $p_{(\alpha,\beta)} \in X$, if $f(p_{(\alpha,\beta)})_q$ A then there exists an IFβGOS B such that $p_{(\alpha,\beta)} \in A$.

PROOF: (i) \Rightarrow (ii) Let f be an IFC β G continuous mapping. Let $A \subseteq Y$ be an IFCS and let $p_{(\alpha,\beta)} \in X$. Also let $f(p_{(\alpha,\beta)})_q A$ then $p_{(\alpha,\beta)} q f^{-1}(A)$. By hypothesis $f^{-1}(A)$ is an IF β GOS in X. Since X is an IF β gT_{1/2} space, $f^{-1}(A)$ is an IF β OS in X. Hence β int($f^{-1}(A)$) = $f^{-1}(A)$. This implies $p_{(\alpha,\beta)} q \beta$ int($f^{-1}(A)$).

(ii) \Rightarrow (i) Let $A \subseteq Y$ be an IFCS then $f^{-1}(A)$ is an IFS in X. Let $p_{(\alpha,\beta)} \in X$ and let $f(p_{(\alpha,\beta)})_q$ A then $p_{(\alpha,\beta)} q f^{-1}(A)$. By hypothesis this implies $p_{(\alpha,\beta)} q$ fint($f^{-1}(A)$). That is $f^{-1}(A) \subseteq \beta$ int($f^{-1}(A)$). But β int($f^{-1}(A)$) $\subseteq f^{-1}(A)$. Therefore β int($f^{-1}(A)$) $= f^{-1}(A)$. Thus $f^{-1}(A)$ is an IF β OS in X and hence an IF β GOS [9] in X. This implies f is an IFC β G continuous mapping.

(ii) \Rightarrow (iii) Let $A \subseteq Y$ be an IFCS then $f^{-1}(A)$ is an IFS in X. Let $p_{(\alpha,\beta)} \in X$. Also let $f(p_{(\alpha,\beta)}) \stackrel{q}{} A$ then $p_{(\alpha,\beta)} \stackrel{q}{} f^{-1}(A)$. By

hypothesis this implies $p_{(\alpha,\beta)} \in \beta$ int $(f^{-1}(A))$. That is $f^{-1}(A) \subseteq \beta$ int $(f^{-1}(A))$. But β int $(f^{-1}(A)) \subseteq f^{-1}(A)$. Therefore β int $(f^{-1}(A)) = f^{-1}(A)$. Thus $f^{-1}(A)$ is an IF β OS in X and hence an IF β GOS [9] in X. Let $f^{-1}(A) = B$. Therefore $p_{(\alpha,\beta)} \in B$ and $f(B) = f(f^{-1}(A)) \subseteq A$.

(iii) \Rightarrow (ii) Let $A \subseteq Y$ be an IFCS then $f^{-1}(A)$ is an IFS in X. Let $p_{(\alpha,\beta)} \in X$. Also let $f(p_{(\alpha,\beta)})_q$ A then $p_{(\alpha,\beta) q} f^{-1}(A)$. By hypothesis there exists an IF β GOS B in X such that $p_{(\alpha,\beta) q}$ B and $f(B) \subseteq A$. Let $B = f^{-1}(A)$. Since X is an IF $\beta_g T_{1/2}$ space, $f^{-1}(A)$ is an IF β OS in X and β int $(f^{-1}(A)) = f^{-1}(A)$. Therefore $p_{(\alpha,\beta) q} \beta$ int $(f^{-1}(A))$.

THEOREM 3.22: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFC β G continuous mapping if f $^{-1}(\beta cl(B)) \subseteq int(f {}^{-1}(B))$ for every IFS B in Y.

PROOF: Let $B \subseteq Y$ be an IFCS. Then cl(B) = B. Since every IFCS is an IF β CS, $\beta cl(B) = B$. Now by hypothesis, f⁻¹(B) = f⁻¹($\beta cl(B)$) \subseteq int(f⁻¹(B)) \subseteq f⁻¹(B). This implies f⁻¹(B) = int(f⁻¹(B)). Therefore f⁻¹(B) is an IFOS in X. Hence f is an IFC continuous mapping. Then by Remark 3.3, f is an IFC β G continuous mapping.

THEOREM 3.23: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IFC β G continuous mapping, where X is an IF $\beta_g T_{1/2}$ space if and only if f⁻¹(β cl(B)) $\subseteq \beta$ int(f⁻¹(cl(B))) for every IFS B in Y.

PROOF: NECESSITY: Let $B \subseteq Y$ be an IFS. Then cl(B) is an IFCS in Y. By hypothesis, $f^{-1}(cl(B))$ is an IF β GOS in X. Since X is an IF $\beta_g T_{1/2}$ space, $f^{-1}(cl(B))$ is an IF β OS in X. Therefore $f^{-1}(\beta cl(B)) \subseteq f^{-1}(cl(B)) = \beta$ int $(f^{-1}(cl(B)))$.

SUFFICIENCY: Let $B \subseteq Y$ be an IFCS. Then cl(B) = B. By hypothesis, $f^{-1}(\beta cl(B)) \subseteq \beta int(f^{-1}(cl(B))) = \beta int(f^{-1}(B))$. But $\beta cl(B) = B$. Therefore $f^{-1}(B) = f^{-1}(\beta cl(B)) \subseteq \beta int(f^{-1}(B))$ $\subseteq f^{-1}(B)$. This implies $f^{-1}(B)$ is an IF β OS in X and hence an IF β GOS [9] in X. Hence f is an IFC β G continuous mapping.

REFERENCES

[1] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy sets and systems, 1986, 87-96.

- [2] Coker, D., An introduction to intuitionistic fuzzy topological space, Fuzzy sets and systems, 1997, 81-89.
- [3] Coker, D., and Demirci, M., On intuitionistic fuzzy points, *Notes on Intuitionistic Fuzzy Sets* 1(1995), 79-84.
- [4] Gurcay, H., Coker, D., and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, The J. fuzzy mathematics, 1997, 365-378.
- [5] Krsteska, B., E. Ekici, Intuitionistic fuzzy contra strong precontinuity, Faculty of Sciences and Mathematics, University of Nis, Siberia, 2007, 273-284.
- [6] Jayanthi, D., Generalized β closed sets in intuitionistic fuzzy topological spaces, International Journal of Advance Foundation and research in Science & Engineering (IJAFRSE), December 2014.
- [7] Jayanthi, D., Relation between semipre closed sets and beta closed sets in intuitionistic fuzzy topological spaces, Notes on Intuitionistic Fuzzy Sets, 2013, 53-56.
- [8] Saranya, M., and Jayanthi, D., On Intuitionistic fuzzy generalized closed sets, International Journal of Computational Engineering Research (IJCER), March 2016, 37-43.
- [9] Saranya, M., and Jayanthi, D., On Intuitionistic fuzzy β generalized open sets, (accepted)
- [10] Saranya, M., and Jayanthi, M., On Intuitionistic fuzzy β generalized T_{1/2} spaces, (accepted)
- [11] Saranya, M., and Jayanthi, D., On Intuitionistic fuzzy β generalized continuous mappings, International Journal of Advance Foundation and research in Science & Engineering (IJAFRSE), Vol 2, Issue 10, April 2016.
- [12] Thakur, S. S., and Rekha Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria: Mathematica, 2006, 257-272.
- [13] Thakur, S.S., and Singh, S., On fuzzy semi-pre open sets and fuzzy semi-pre continuity, Fuzzy sets and systems, 1998, 383-391.
- [14] Young Bae Jun & seok Zun Song, Intuitionistic fuzzy semi-pre open sets and Intuitionistic semi-pre continuous mappings, jour. of Appl. Math & computing, 2005, 467-474.